Streaming Web Services and Standing Processes

Steffen Preifler, Hannes Voigt, Dirk Habich, Wolfgang Lehner
Technische Universitidt Dresden
Lehrstuhl fiir Datenbanken
dbgroup @mail.inf.tu-dresden.de

Abstract:

Today, service orientation is a well established concept in modern IT infrastruc-
tures. Web services and WS-BPEL as the two key technologies handle large struc-
tured data sets very inefficiently because they process the whole data set at once. In
this demo, we present a framework to build standing business processes. Standing
business processes rely on item-wise data set processing, exploit pipeline parallelism
and show a significantly higher throughput than the traditional WS-BPEL approach.

1 Introduction

Today an increasing number of IT infrastructures are built as a service-oriented archi-
tecture (SOA). In SOA, independent systems provide their functionality as interoperable
services. Systems group theses services in business processes and package them as fur-
ther interoperable services. Web services and WS-BPEL are two key technologies to re-
alize a SOA. The Web service specification [W3CO02] offers standardized structures for
self-description and message exchange and is, therefore, the well established standard for
interoperable services. WS-BPEL [OASO7] provides workflow constructs to build fully-
fledged processes with service calls as core activities.

Within the THESEUS research project [BMWO07], the TEXO use case aims to built a SOA-
based platform where services are tradable and business value networks can be established.
As partner in TEXO, we investigate the efficient processing of large structured data sets
in SOA environments. Our approach is a new type of process, which is called standing
business process. It builds on top the workflow constructs of WS-BPEL, but exploits
pipeline parallelism for large data set processing. Thereby large data sets can be considered
as a stream of equally structured messages or a given set of equally structured data items.
[LCFO8] already discussed that the throughput of large data set processing can be increased
significantly by exploiting pipeline parallelism. Traditional approaches only map each
single item (or message) to a single process instance with a still step-wise execution model
and single service calls. These approaches limit the processing semantic to single-item
operations. However, common business process operations such as aggregations involve
more than one data item.

As an example, consider the stock-ticker process in Figure 1, which handles incoming
RSS-Feed messages. Whenever a message arrives, only interesting stocks are selected for

608

Stock Ticker Process

@

selection
invoke
Trend Service
invoke
Visual Service
exceeded?

stock exchange
tickers

invoke
Sales Service

T
v v v

Visualization
Service

Trend Service Sales Service

Figure 1: Sample stock ticker process

further processing. The selected stocks in a message are evaluated over a time window us-
ing a service (Trend Service) that monitors different stock trends and keeps a history
of their values. The service returns the stock trend over the requested time window and
the process sends this information to a visualization service, that displays the trend on a
customer’s dashboard. Afterwards the process compares the trend to a predefined value.
If the trend exceeds a certain threshold, the Sales Service service will be triggered,
otherwise nothing is done.

This type of application scenario cannot be executed efficiently with classic means. Tra-
ditionally, each ticker message triggers the explicit creation and execution of one process
instance. Thereby each message is processed in its own context and a common context
for ,e.g., in-house stock trend computation can not be exploited. Furthermore the start of
a message’s processing is delayed, until the process instance of the previous message has
been executed successfully to ensure temporal integrity. This leads to a significantly lower
throughput of incoming messages.

In this demo we introduce the novel notion of standing business processes that realize
pipelined and context-preserving data set processing in the SOA world. To show the ap-
plicability of our concept, we present a framework to model and execute such standing
processes. Our approach establishes real pipeline parallelism, increases the processing
throughput and does not restrict the processing semantic.

2 Streaming in service-oriented environments

Traditional business processes in WS-BPEL follow an instance-based execution model.
Every incoming message creates a dedicated process instance, which is executed isolated
from all other instances. This type of process execution is not efficient for processing
large amounts of incoming, equally structured messages that semantically belong to one
context. However, in WSBPEL it is possible to express one context for a set of incoming
messages with the help of a while loop and correlation sets. The while loop has to enclose
all corresponding control flow activities for one message. Additionally, correlation sets

609

route messages to specific process instances. The disadvantages of this approach are (i)
the explicit modeling of a control flow loop with one iteration for every message, (ii) the
still step-wise execution within the loop where only one activity is running and all others
are idle and (iii) the need for a static value within the messages’ body to use correlation
sets and to map, thereby, messages with specific values to a specific process instance.

In order to use pipelined parallelism in combination with business process types like our
stock ticker process, the process engine requires the pipes and filters execution model.
In pipes and filters every activity of a process is executed as a single thread and each
edge between two activities contains a queue, which buffers data that belong to specific
messages. Additionally the semantic and the functionality of each control flow operator
are adapted to work with input and output queues and to realize one common process
context for all messages.

Service invocation and execution within a standing process needs adaptation, too. The
pipes and filters execution model implies that services are called item-wise. Consequently,
with the traditional service invocation pattern, data items lose their context on service side,
since one service instance is created for every item. To preserve the context of the items
on service side, a standing process pushes the message queue embracing one service invo-
cation down to the service instance. In addition to that, the service execution is enhanced
to process these items in a stream-based fashion. By this means the standing process adds
streaming semantic to the service call. This enables the service to return already processed
data items while still receiving request items. This stream-based service execution elim-
inates the overhead of single message creation compared to traditional item-wise service
invocations and preserves the context of the items at the same time. [PVHLO09] discusses
this approach in more detail.

The visual modeling of standing processes with our framework heavily corresponds to the
modeling of standard processes (see Figure 2). Similar to standard processes, the user
chooses from a set of operators provided by the framework and orchestrates them to a
workflow definition. What differs in the visual representation are the queue symbols be-
tween two connected activities. These symbols represent the already mentioned message
queues, so that the user can configure them at design time (e.g., maximum queue size).
When executing a standing process, our framework visualizes a running process instance
by displaying the modeled graph and augmenting its graphical components with infor-
mation about the current workload for every queue, the average execution time for every
operator as well as path counters when utilizing switch operators.

3 Demo Details

Fundamentally, the demonstration will consist of two parts. In the first part, we demon-
strate the execution of standing processes with our developed standing process engine.
For this, we prepared a set of predefined processes. As an example, Figure 2 shows a
screenshot of the stock-ticker process discussed in the introduction.

These demo part shows the applicability of our standing process concept and the imple-

610

& Model View &2 o Data Model View =0

[Start

[® End
{2} <<Decision=> [<<End>> £ Invoke
Trend Vielation?
327071713 ol [Assign

yes
% Fork
& SkeJoin
< <Invoke> < <Ends>
Sales Process & User
327071719 327071717 e
2} Decision
¥ Delete
. Save

(=1

=
H
=)

[<<start>> [<<Assign>>
Sample Process Select Stock
327071707 327071701

&y <<tnvoke>> & <<imvake>> ‘

Trend Service Visual Service
327071709 327071703

Figure 2: Screenshot of stock-ticker process

mented framework within several scenarios. In addition to the prepared processes, visitors
of our demo desk will also have the possibility to experience the orchestration of new
standing process definitions. This gives the visitors an understanding of the whole model-
ing approach and the benefits of standing processes.

In the second part, we present the implementation and usage of stream-based services. For
this, we prepared stream-based services, traditional services, and an execution front-end to
experimentally show the benefit of our approach. Furthermore, we describe our extension
on the Web Service interface description, which allows us to identify and use stream-based
services with our standing process framework. We welcome visitors of our demonstration
desk to create new stream-based Web services and show the easy usage of our service
framework. In this case, visitors of the demo will get an in-depth understanding of our
developed concept.

4 Acknowledgements

The project was funded by means of the German Federal Ministry of Economy and Tech-
nology under the promotional reference ’01MQO07012”. The authors take the responsi-
bility for the contents.

References

[BMWO07] Bundesministerium fiir Wirtschaft und Technologie BMWi. THESEUS Programme,
2007. http://theseus—-programm.de/.

[LCF08] Melissa Lemos, Marco A. Casanova, and Antonio L. Furtado. Process pipeline schedul-
ing. J. Syst. Softw., 81(3):307-327, 2008.

[OASO7] OASIS. Web Services Business Process Execution Language 2.0 (WS-BPEL), 2007.
http://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=wsbpel.

[PVHLO9] Steffen Preissler, Hannes Voigt, Dirk Habich, and Wolfgang Lehner. Stream-based Web
Service Invocation. In BTW, 2009.

[W3C02] World Wide Web Consortium W3C. Web Service specifications, 2002.
http://www.w3.0rg/2002/ws/.

611

