
Dataflow Programming for Big Engineering Data

– extended abstract –

Felix Beier, Kai-Uwe Sattler, Christoph Dinh, Daniel Baumgarten

Technische Universität Ilmenau, Germany

{first.last}@tu-ilmenau.de

Nowadays, advanced sensing technologies are used in many scientific and engineering

disciplines, e. g., in medical or industrial applications, enabling the usage of data-driven

techniques to derive models. Measures are collected, filtered, aggregated, and processed

in a complex analytic pipeline, joining them with static models to perform high-level tasks

like machine learning. Final results are usually visualized for gaining insights directly

from the data which in turn can be used to adapt the processes and their analyses itera-

tively to refine knowledge further. This task is supported by tools like R or MATLAB,

allowing to quickly develop analytic pipelines. However, they offer limited capabilities of

processing very large data sets that require data management and processing in distributed

environments – tasks that have vastly been analyzed in the context of database and data

stream management systems. Albeit the latter provide very good abstraction layers for data

storage, processing, and underlying hardware, they require a complex setup, provide only

limited extensibility, and hence are hardly used in scientific or engineering applications

[ABB+12]. As consequence, many tools are developed, comprising optimized algorithms

for specialized tasks, but burdening developers with the implementation of low-level data

management code, usually in a language that is not common in their community.

In this context, we analyzed the source localization problem for EEG/MEG signals (which

can be used, e. g., to develop therapies for stroke patients) in order to develop an approach

for bridging this gap between engineering applications and large-scale data management

systems. The source localization problem is challenging, since the problem is ill-posed

and signal-to-noise ratio (SNR) is very low. Another challenging problem is the compu-

tational complexity of inverse algorithms. While large data volumes (brain models and

high sampling rates) need to be processed, low latencies constraints must be kept because

interactions with the probands are necessary. The analytic processing chain is illustrated

in Fig. 1. The Recursively Applied and Projected Multiple Signal Classification (RAP-

MUSIC) algorithm is used for locating neural sources, i. e., activity inside a brain cor-

responding to a specific input. Therefore, 366 MEG/EEG sensors are placed above the

head which are continuously sampled at rates of 600 – 1250 Hz. The forward solution

of the boundary element model (BEM) of the brain at uniformly distributed locations on

the white matter surface is passed as second input. It is constructed once from a magnetic

resonance imaging (MRI) scan and, depending on the requested accuracy, comprises 10s

of thousands of vertices representing different locations on the surface. RAP-MUSIC re-

cursively identifies active neural regions with a complex pipeline for preprocessing signal

measures and correlating them with the BEM. To meet the latency constraints, the RAP-

101



Figure 1: Overview Source Localization Processing Chain

MUSIC algorithm has been parallelized for GPUs and a C++ library has been created

in an analysis tool called MNE-CPP [DLS+13], including parsers for data formats used

by vendors of medical sensing-equipment, signal filter operators, transformation routines,

etc. Although this library can be used to create larger analyses pipelines, implementing

and evaluating new algorithms still requires a lot of low-level boilerplate code to be writ-

ten, leading to significant development overheads. Latter can be avoided with the usage of

domain-specific languages which are specialized for signal processing, natively working

on vectors or matrices as first-class data types like MATLAB. But they offer less control

over memory management and parallelization for custom algorithms which are crucial for

meeting the latency constraints. When large-scale data sets shall be processed, even a spe-

cialized tool quickly runs into performance problems as distributed processing is mostly

not supported because of large development overheads for cluster-scale algorithms.

To handle these problems, we propose to apply dataflow programming here. We imple-

mented a multi-layered framework which allows to define analytic programs by an abstract

flow of data, independent from its actual execution. This enables quick prototyping while

letting the framework handle data management and parallelization issues. Similar to Pig

for batch-oriented MapReduce jobs, a scripting language for stream-oriented processing,

called PipeFlow, is provided as front-end. In the current version, PipeFlow allows to inject

primitives for partitioning dataflows, executing sub-flows in parallel on cluster nodes lever-

aging multi-core CPUs, and merging partial results. We plan to automatically parallelize

flows in the future using static code analysis and a rule-based framework for exploiting

domain-specific knowledge about data processing operators. The dataflow programs are

optimized by applying graph rewriting rules and code for an underlying execution back-

end is generated. Therefore, the framework provides an engine called PipeFabric which

offers a large C++ library of operator implementations with focus on low-latency process-

ing. One key aspect of PipeFabric is its extensibility for complex user-defined types and

operations. Simple wrappers are sufficient to embed already existing domain-specific li-

braries. For our use case, processing of large matrices is required. Therefore, we used the

Eigen library and are currently porting functions from MNE-CPP. We are also working on

code generators for other back-ends like Spark which will be useful for comparing capa-

bilities of different frameworks for common analytic workloads – which, to the best of our

knowledge, has not been done yet.

References
[ABB+12] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. NoDB: efficient

query execution on raw data files. In ACM SIGMOD, 2012.

[DLS+13] C. Dinh, M. Luessi, L. Sun, J. Haueisen, and M. S Hamalainen. Mne-X: MEG/EEG
Real-Time Acquisition, Real-Time Processing, and Real-Time Source Localization
Framework. Biomedical Engineering/Biomedizinische Technik, 2013.

102


