
Alignment of Software Specifications with Quality- and
Business Goals in the SIKOSA Method

Andrea Herrmann1, Daniel Weiß2

1Software Engineering Group, Faculty of Mathematics and Computer Science
University of Heidelberg

Im Neuenheimer Feld 326
69120 Heidelberg, Germany

herrmann@informatik.uni-heidelberg.de

2 Information Systems II (510 O)
University of Hohenheim
70593 Stuttgart, Germany

daniel.weiss@uni-hohenheim.de

Abstract: Business-IT alignment for software specifications means that the
specifications have to be aligned with business goals. In the SIKOSA research
project, we developed the SIKOSA method which supports the integrated
assurance of quality during the whole software development process. In this work,
we present these aspects of the SIKOSA method, which especially align
specification decisions to quality goals and thus indirectly to business goals. Such
goals play a role in the following activities: the derivation of software requirements
from quality goals, the prioritization of these software requirements, and the
definition of decision criteria for architectural design decisions. The results of all
three activities influence architectural decisions.

1 Introduction

Business-IT alignment for software development means that the software (and all other
artefacts) have to be designed in a way to support the business goals (problem).
Assuming that the software works as it was specified, the software specifications have to
be aligned with the business goals as well. Specifications are the result of a complex
decision-making process which involves a variety of interdependent decisions on
different levels of granularity, involving diverse stakeholders. Therefore, our objective in
the research project SIKOSA was to develop a modelling method which supports a
consistent alignment of specification-related decisions to business goals during different
phases of the software development process (object of investigation) in an integrated
way. For this purpose we took an overall method engineering perspective.

The SIKOSA method supports the integrated assurance of quality and of business-IT
alignment during the whole software development process. No other software modelling
method exists for doing so. Our prior work [HPK06] and [WKK07] describes this
method. In the present work, we highlight those aspects of the SIKOSA method which

27

27

align specifications to quality- and business goals. The SIKOSA method consists of
several modules. Those modules treating specification issues are: ProQAM (Process-
oriented Questionnaires for Analyzing and Modeling Scenarios) [DOK05], TORE (Task
Oriented Requirements Engineering) [PK03], MOQARE (Misuse-oriented Quality
Requirements Engineering) [HP05], [HP07], and ICRAD (Integrated Conflict Resolution
and Architectural Design) [HPP06].

Software properties and how well they are aligned with the business goals are defined by
the decisions made during the software specification process. The requirements
specification describes the needs, while the architectural design (specification) describes
what will be implemented. Decisions based on the needs are made during the following
activities: the software requirements specification, the definition of decision criteria for
architectural design decisions and the prioritization of software requirements.1 The
results of all three activities influence the fourth activity: architectural decisions
concerning the solution.

In the SIKOSA method, these activities produce the following artefacts (Figure 1):

1. Software requirements (here: MOQARE countermeasures) are derived from
business goals by ProQAM and MOQARE.

2. Decision criteria for architectural design decisions with ICRAD are derived
from business goals.

3. Software requirements priorities are attributed to the software requirements,
taking into account the ICRAD decision criteria and the business goals.

4. Architectural design decisions are made with ICRAD.

Figure 1: Business goals indirectly influence architectural decisions via three intermediate
artefacts; the arrows signify relationships of the type “influences” between the artefacts

1 Priorities support many further decisions such as conflict solution or test decisions.

28

28

The remainder of the paper is as follows: Section 2 cites related work. The subsequent
sections treat the four above mentioned activities: Section 3 describes how
countermeasures are derived from goals by MOQARE. Section 4 discusses ICRAD´s
architectural design decision criteria, section 5 treats requirements prioritization. Section
6 presents how architectural decisions in ICRAD are indirectly aligned with goals, when
they are based on software requirements, their priorities and the architectural decision
criteria as defined in the preceding sections. Section 7 provides a summary.

2 Related Work

How decisions concerning specifications can be consistently aligned to business goals
during different phases of the software development process, is no new question.
Software modelling and specification methods have treated parts of this question, which
now is fully treated by the SIKOSA method for the first time. In this section, we cite
work which we built upon.

Business goals are “high-level reasons for getting the new product” [La02] and a “non-
operational objective to be achieved by the […] system” [DVF93]. A lot of research
activities focus on the business goals of software systems, projects or organizational
units dealing with their classification and identification. Business goals can be
categorized according to the five dimensions: product size, quality, staff, cost, and
(calendar) time [Wi02]. Orthogonally to these dimensions, business goals can be
classified according to the four perspectives of the Balanced Scorecard [KN92]:
financial, customer, internal processes, learning & growth. For details, we refer the
interested reader to the business literature mentioned above.

Software requirements and software requirements decisions can be described on
different levels of granularity and with different focus. Aurum et al. [AWP06]
distinguish four levels of requirements decisions: business, stakeholders, project, and
product level. Lamsweerde et al. [La01] discern business goals, project goals, and
software system goals. The distinction between business goals and software goals as
well as their alignment are important features of the SIKOSA method.

The goal-oriented requirements engineering methods [La01] have been using software
(product) goals successfully as a starting point for software requirements specification.
In [He07], we have discussed how goal-orientation and hierarchical top-down detailing
from goals to software requirements ideally supports decision-making during
requirements elicitation. Other authors also emphasize the importance and multiple roles
of goals for requirements elicitation, alignment of requirements with business goals,
requirements validation, conflict solution and architectural design [YM98], [RS05].
However, these methods do not distinguish between business goals and software goals.

It seems logical to derive software requirements from business process requirements.
Nevertheless, there are only few approaches to do so [BE01], [KL06a]. Business process
modelling and software requirements modelling still use different notations and
semantics. Approaches to their integration are presented by [SH00], [No04], [BCV05],

29

29

[KL06b]. However, some weaknesses of the integrations remain [BE01], [KL06a].
Especially, former work concentrates on functional requirements (FR). Non-functional
requirements (NFR) are neglected, although they are gaining more and more relevance,
as the competition on the market cannot be won by a software´s functional scope alone,
but also quality is crucial. The SIKOSA method is the first one which models business
process requirements as well as software requirements, FR as well as NFR.

Goals can serve as decision criteria. This means that among several available
alternatives, the one is chosen which supports the goal(s) best. Which goals and decision
criteria are used in a specific context depends on the stakeholder preferences. However,
in literature it is not discussed which further factors influence the choice of a decision
criterion. During our literature research and case study experience, we found that the
decision criterion strongly depends on the question which is to be answered during a
specific software development phase [He07]. For instance, requirements engineering
aims at identifying those requirements which are most beneficial to the stakeholders,
while architectural design chooses that design which satisfies the requirements best.
Furthermore, the satisfaction of some criteria can not be estimated in each phase, e.g.
reliable cost estimates are more difficult to obtain during requirements engineering than
during design, when there is some – even preliminary – knowledge about the IT
system´s realization. This is why in the SIKOSA method use different decision criteria
for each of the four activities shown in Fig. 1.

3 Derivation of software requirements from software goals

The distinction between business goals and software goals is fundamental in the
SIKOSA method. Software goals can be functional or non-functional goals. In the
SIKOSA method, the functional goals are described by the business processes to be
supported, while the non-functional goals are called quality goals.

We integrate the ProQAM business requirements modelling with software requirements
specification based on quality goals and countermeasures (NFR described with
MOQARE) and use cases (FR described with TORE). Usually, goal-oriented analyses
proceed from high-level goals down to requirements [He07]. This is supported
systematically by the modules of the SIKOSA method, as presented in Figure 2.

Figure 2: ProQAM, TORE and MOQARE derive software requirements from business goals

The five concepts shown in Figure 2 are defined as follows:

30

30

Business goal: ProQAM identifies the stakeholders´ business goals. These
can be formal or technical and express situations to be achieved and results
respectively modes of action by means of decisions.

Process requirements: The process requirements describe the process which
is to be executed. Not only does it contain the steps which are to be
supported by software, but also staff needed or relevant competences. In
ProQAM, such elements are described by central constructs of event-driven
process chains (EPCs [Sc01]). The central element, the function, is defined
in a way to support the business goals.

Use case: Use cases [Co01] describe the requirements for the interaction
between user (or other, maybe non-human actors) and the software,
including pre-conditions, interaction steps and post-conditions. They can be
derived from the process requirements. Deriving FR from business processes
in the form of such use cases is supported by the method TORE.

Quality goal: A quality goal is a goal which is to be satisfied by the software
and therefore is a high-level NFR. In MOQARE, quality goals are expressed
by the combination of an asset plus a quality attribute, like “usability of the
user interface”. An asset can be any protectable part of the system. A quality
attribute describes an aspect or characteristic of quality.

Countermeasure: A countermeasure is an operational requirement which
supports the quality goal. Countermeasures can be FR, exception scenarios
of use cases, NFR constraining use cases, architectural constraints, user
interface constraints, constraints on project and software development,
constraints on administration or maintenance, or another quality goal.

The five concepts above describe desired properties of the business, the business
processes, and the software. From the security field, the idea of negative, undesirable
concepts has been adopted in the SIKOSA method. The most famous concept based on
this principle is the misuse case [SO00], [SO01], [Al02]. Like use cases, misuse cases
describe the interaction of the software system with an actor, but misuse cases describe
unwanted scenarios (e.g. attacks, user errors, accidents) which threaten goal satisfaction.
Misuse cases help to define and to complement the software requirements and also to
document the justification of these requirements. This principle is used in the SIKOSA
method with respect to business goals and quality goals.

Due to limited space, we focus on the realization of Business IT-alignment in the
SIKOSA method. For a complete description of the methods, we refer the reader to the
publications cited in the introduction. In the remainder of this section, we describe how

31

31

countermeasures are derived from functional and non-functional process requirements
by MOQARE. These process requirements are output of ProQAM2.

To illustrate our methods, we describe a case study performed during the Sysiphus
enhancement3. Sysiphus is a tool which is developed and used at the University of
Heidelberg and the Technical University of Munich to teach software engineering and to
document the results of case studies [Sy07]. Sysiphus implements TORE and
MOQARE. It also supports design according to Brügge and Dutoit [BD04] and ICRAD.
The case study objectives were: We wanted to test and to measure the usability of
Sysiphus and to propose requirements on potential improvements. These requirements
had to be prioritized in order to be integrated into plans for the further enhancement of
Sysiphus. Finally, a workshop was held to discuss strategies of how to implement the
improvements and a decision was made.

To meet these objectives, this case study included the following steps:

1. Definition of a usage context and the business goal
2. Description of the FR
3. Detailing of the quality goal „usability of the user interface“ and derivation of

countermeasures, in order to define what usability means for this system
4. Benefit estimation for the FR and countermeasures
5. Usability test and evaluation of the software to measure how well the

countermeasures and the quality goal “usability” are satisfied
6. Prioritization of the countermeasures for release planning
7. Decision on implementation alternatives

The results of the steps 4 to 6 are presented in section 5, and step 7 in section 6.

Step 1: We restricted the scope of the analysis to the requirements engineering (RE) and
architectural design (AD) modules of Sysiphus. Their business goal is “efficient support
of RE and AD”. The analysis started with the quality goal “usability of user interface”,
which in a former analysis (not presented here) had been identified to contribute to this
business goal. We assumed a usage context where Sysiphus is applied in a small
company by ten IT professionals. They are irregular users, had only short Sysiphus
training and are offered no helpline support. They must use the tool during RE and AD.

Step 2: The FR supported by the RE & AD part of Sysiphus are described by 27 use
cases, such as “specification of misuse cases” or “review of design”.

2 We want to remark that one of the strengths of the SIKOSA method is that it integrates modular methods
which can be applied independently of the others as well as in combination.
3 Further MOQARE case studies have been published here: [HRP06], [HKD07], [HP07]. However, most
industry case studies we performed are confidential.

32

32

Figure 3: Section of the Misuse Tree resulting from the case study

Step 3: From quality goals, MOQARE derives misuse cases and countermeasures. The
misuse cases threaten the quality goals. A countermeasure reduces the probability of a
misuse case or reduces its predicted negative consequences. By analyzing the quality
goal with MOQARE, 22 misuse cases and 31 countermeasures were identified. Two ISO
standards [ISO13], [ISO92] supported the identification of usability requirements, which
then were chosen and detailed specifically to the context and its needs. Figure 3 shows a
section of the resulting Misuse Tree. System specific misuse cases and countermeasures
should be worded in a way to apply to the 27 use cases individually, but we did not do so
here because so many details would have complicated the Misuse Tree and all later
treatments of the countermeasures.

4 ICRAD decision criteria for architectural decisions

As business-IT alignment is our objective, the decision criteria for architectural decisions
have to be defined in a way to support the business goals. The business goals usually can
not be used as design decision criteria directly. For instance, it might be difficult to
estimate how well an architectural solution supports the business goal “high market
share” or “efficient process support”, as their satisfaction does not depend on the
software alone. It is easier to predict how well the quality goal “usability of user
interface” is supported.

Frequently used decision criteria for architectural decisions are benefit, cost, complexity
and risks, or combinations of these factors, like net value and benefit-cost-ratio
[XMC04] [KAK01], [IKO01]. Therefore, in ICRAD these are the four standard
evaluation criteria for architectural alternatives (see section 6). If necessary, ICRAD can
be adapted in order to use other or additional criteria, like the satisfaction of goals
[GY01], of non-functional goals [KAK01], [IKO01] or of functional goals [CB95],
[KAB96]. But usually, if the benefit of these goals is known, their satisfaction is taken
into account by considering their contribution to the benefit.

33

33

5 Prioritization of requirements

In [HPP06], we discussed that some requirements conflicts can only be solved knowing
the possible technical solutions and by selecting one of these architectural alternatives.
However, one out of three types of requirements conflicts can be solved without this
knowledge, based on requirement priorities [HPP06]. Presorting of requirements is
useful for supporting such conflict solution and other decisions. Davis talks of
“requirements triage” [Da03] and also the “Planning Game” of Extreme Programming
[Be00] classifies requirements according to which ones have to be implemented, which
can be postponed and which have to be analyzed in more detail. Such a classification
facilitates decisions like release planning. During architectural decisions, must-
requirements can be an exclusion criterion: Those architectural alternatives which do not
satisfy the must-requirements will not be considered further. Some decisions later in the
software development process can use requirement priorities, like testing (where
requirements priorities support test case prioritization) or – as in the case study – the
assessment of the overall level of quality.

Step 3 of the case study identified requirements which Sysiphus should satisfy in order
to support the quality goal “usability of user interface”. Some of these countermeasures
are currently not satisfied, while others are (at least partly) satisfied by Sysiphus. In the
case study, we used two prioritization criteria: With respect to the overall assessment of
the usability of Sysiphus, our main criterion for requirements prioritization was its
benefit relative to the usability quality goal. For the planning of later software releases, it
was important whether and how well a countermeasure is already satisfied; its
implementation cost also played a role.

In MOQARE, we derive a countermeasure´s benefit from the risk reduction which it
causes with respect to the misuse case risk. Misuse Case risk is defined as the product of
probability and caused damage [ISO02], [XMC04]. Common methods for requirements
prioritization4 do not consider dependencies among the benefits of requirements at all or
only superficially. In reality, however, such dependencies are frequent and critical. For
instance, countermeasures can replace each other partly, when they mitigate the same
misuse case. Or countermeasures may need each other for being effective against the
same misuse case. We take into account such dependencies by bundling requirements
and by relating all estimations to a reference system [HP06]. In many prioritization
methods, it is common to bundle those requirements which depend on each other most in
relatively independent bundles5. The reference system is the idea of a set of requirements
which are imagined to be implemented. If perfect quality is the benchmark, the perfect
system is the reference, i.e. a system in which all requirements are implemented

4 Such methods are the analytic hierarchy process (AHP) [Sa80], [KWR98], numeral assignment [Ka96] or
cumulative voting (CV), also called “$100 test” [LW00], [BJ06]. According to [HP06], all methods which
attribute one fixed priority value to each requirement can be said to neglect dependencies.
5 These groups are then called features [RHN01], [Wi99], feature groups [RHN01], super-requirements
[Da03], classes of requirements [REP03], bundles of requirements [PSR04], categories [XMC04], User Story
[Be00], super attributes [SKK97] or Minimum Marketable Features [DC03].

34

34

[XMC04]. The reference system can also be the ensemble of all mandatory requirements
[REP03], the former system version or a competitor´s product.

When estimating a countermeasure´s benefit relative to a reference system, the risk of
the corresponding misuse case(s) is estimated twice: Firstly, the “reference risk” in the
reference system is estimated, secondly the “varied risk” if this countermeasure is not
implemented or if it is implemented additionally. The benefit achieved by a
countermeasure in relation to a misuse case equals the risk reduction [AH04], [XMC04].

On this basis, we can continue with the case study´s Step 4: The reference system was
defined to support all the FR identified in step 2 plus all countermeasures defined in step
3. This means that our benchmark is the system with perfect usability. The benefit of this
reference system is set to 100 benefit points. This benefit is defined to be achieved by
the satisfaction of the FR alone. Then, the satisfaction of the usability goal does not add
direct benefit, but only prevents risk. We use the unit “benefit points”, because it is
difficult in an example with fictitious usage context to estimate benefits in Euro.

The FR benefits were defined on two levels of granularity. On a high level, we identified
three FR bundles defined according to the three methods supported. We assumed these
bundles to be independent and simply distributed the 100 benefit points. On the use case
level, within each bundle use case benefits were estimated.

Misuse case probabilities were estimated in percentage and damages in benefit points
relative to the total system benefit of 100. Resulting benefits for the most important and
some less important countermeasures are shown in Table 1. There usually are n-m-
relationships among misuse cases and countermeasures, which complicate the
estimations. Countermeasures which need each other for being effective, should be
bundled and estimated like one. All others are estimated individually relative to the
reference system. We here discuss the countermeasure “all necessary data on user
interface” (which is a quality goal itself and further analyzed in Figure 3). It refers to two
misuse cases. In the reference system, the risk of both misuse cases is supposed to be 0.
If the countermeasure was not implemented, then the user – as a workaround - can open
several Sysiphus windows and this way get all necessary data. However, this does not
work for all user actions and it is inefficient. The misuse case “User interface does not
show all necessary data” causes a damage of 100 points, because it makes the system
useless. However, this happens only in an estimated 40% of the user actions. Therefore,
its varied risk without the countermeasure being implemented is 40 points. Without the
countermeasure, the other misuse case – “the user interface does not support the user
efficiently” - is true to 100%. As the users are obliged to use the system and because
they are IT professionals, who can handle two windows on their screen, the damage was
estimated to be only 10 points (the value of loss of productive work time). Assuming that
both misuse cases are independent of each other, the countermeasure´s benefit then is
40+10=50 benefit points. As can be seen in the table, all other countermeasures have a
much lower benefit. There was no other misuse case in the analysis which caused such
high damage.

35

35

Table 1: Countermeasure benefits resulting from the case study (Remark: These benefits are
specific to the case study and not generally valid.)

Benefit (in
benefit points)

Countermeasure

50 All data necessary for one user action must be presented at the same time.

2.0 At any time, the currently executed user action must be obvious to the user.

1.8 The system allows filtering of data.

1.4 Automated check whether input data are within the valid range

1.1 Context sensitive help for any screen and data field

1.02 User training

1.0 Success notification after completion of each user action

1.0 Support of users for doing the user actions in the right order

1.0 Explanations on user interface + self-explanatory names

…

0.1 The system allows to adapt the size of the work space.

0.0875 Data fields are initialized with default values.

Step 5: Usability test: To save time during the case study, we did not specify detailed
test cases for evaluating the current satisfaction of the usability requirements by the
system. Instead, we executed the 27 use cases as defined in step 2 and assessed how well
each of them satisfies each of the countermeasures. The results of these tests were
entered in a spreadsheet table where each column corresponds to a use case and each
row to a countermeasure. These results xij measure the degree of satisfaction of a
countermeasure i during the execution of a use case j between 0 (not satisfied at all) and
1 (perfectly satisfied). These tests were performed by two testers and the results were
discussed afterwards to obtain a shared judgement.

The satisfaction of each countermeasure i was calculated as weighted sum xi = j (xij ·
benefit of use case j). If all countermeasures were satisfied, the total system benefit
would have been 100 points. As some were only partly satisfied, the total usability risk
(benefit loss) was the weighted sum = i [(1- xi) · (benefit of countermeasure i)]. This
risk was 18 points and consequently the effective benefit of the system 100-18 = 826.
This value will be especially interesting when we will re-assess the usability after a
system enhancement to measure the usability improvement quantitatively.

Step 6: Countermeasure prioritization for release planning: For those
countermeasures which are not yet satisfied to 100%, the cost of doing so was estimated
in 1, 2 or 3 cost points. The priority of a countermeasure i with respect to release
planning was defined to be proportional to “(1-xi) · benefit of countermeasure i”. Those

6 We must remark here that we were very strict when evaluating the software!

36

36

countermeasures with the highest priorities and those with cost = 1 were candidates to be
scheduled for the next release.

6 Architectural decisions which are aligned with goals

ICRAD [HPP06] is an iterative and integrated process for the solution of
requirements conflicts and for architectural design. In this section, we describe how it
compares architectural alternatives and how the decision is made. Decisions among two
or more alternatives and their justifications are documented in the template shown in
Table 2. Each alternative is evaluated with respect to its benefit, risk, implementation
cost and complexity cost. The reference system can be different for each decision, as it is
modified by the decisions made before7. The benefit of an alternative is not equal to the
sum of the benefits of the requirements realized by this alternative, due to dependencies.
The risk of an alternative includes risks provoked by realizing risky requirements or
provoked by the architectural alternative, as well as risks provoked by not realizing some
countermeasures. Cost of implementation ideally is estimated in the same unit as the
benefit, in order to be comparable. Complexity includes architectural and organizational
complexity and will lead to maintenance and other cost. For being comparable to the
other criteria, complexity is transformed into complexity cost. Complexity is caused by
software complexity, e.g. by coupling of its components [KAB96], [CB95], [LRV99]
and also by the complexity of the software´s integration into its environment. These
estimations are done for both (respectively all) alternatives of the same decision and
their results are documented in Table 2.

Table 2: Template table used to compare alternatives in ICRAD.

Alternative 1 Alternative 2 Difference

Cost C1 C2 C2-C1
Complexity Cost CC1 CC2 CC2-CC1

Risk R1 R2 R2-R1

Benefit B1 B2 B2-B1

Total benefit B1-R1 B2-R2 (B2-R2)-(B1-R1)
Total cost C1+CC1 C2+CC2 (CC2- CC1)+(C2-C1)

Net value (B1-R1)-
(C1+CC1)

(B2-R2)-
(C2+CC2)

(B2-R2)-(C2+CC2)
-(B1-R1) +(C1+CC1)

Total Benefit/
total cost

(B1-R1) /
(C1+CC1)

(B2-R2) /
(C2+CC2)

[(B2-R2)-(B1-R1)] /
[(CC2- CC1)+(C2-C1)]

7 This – together with requirements dependencies – is why the requirements benefits estimated in section 4
cannot be re-used directly here.

37

37

The total benefit is calculated as benefit minus risk. Total cost includes
implementation plus complexity cost. Two decision criteria are:

net value = total benefit minus total cost
Benefit-cost-ratio = total benefit / total cost

If the more expensive solution has a lower benefit, then it is logical to choose the
cheaper and better solution. However, very often, the alternative with the higher benefit
is the more expensive one, as is also the case in our case study. The value [(B2-R2)-(B1-
R1)] / [(CC2- CC1)+(C2-C1)]= TB/ TC (see Table 2, in the lower right field) has
shown to be a good third decision criterion [HPP06]. These three criteria do not always
lead to the same decision. How to proceed if they are in favour of different decisions is
described in [HPP06].

In the case study, we have identified a multitude of countermeasures which signify
improvement ideas. One might have realized them in a series of subsequent releases
improving the user interface´s usability incrementally. As an alternative, we considered
re-designing the user interface. This decision was fundamental and was discussed in a
workshop of several hours with ten participants. The workshop started with a discussion
of the countermeasures and architectural alternatives. Without going into detail, we want
to present the resulting decision between two alternatives. Although in the preceding
steps, a countermeasure´s benefit was a main criterion for its prioritization, now the
default criteria of ICRAD have all been taken into account, because the implementation
cost, complexity cost and risks caused by a solution also play a role for the decision for
or against the one or the other solution. The must-requirement “All data necessary for
one user action must be presented at the same time.” (from Table 1) was realized in both
alternatives. The other countermeasures were considered indirectly by estimating the
benefit on the basis of which countermeasures can be realized by each of the
alternatives. The benefit of a requirement was again measured in “benefit points”,
relative to the 100 value of the perfect system. Benefit should ideally be comparable to
cost, yet in this case study they were not. The cost of each alternative here was estimated
in person months (unlike cost estimation for individual requirements in step 6).

Table 3: Comparison of alternatives in the case study; “PM” stands for “person months”
and “BP” for “benefit points”

Alternative 1:
incremental
improvement

Alternative 2:
re-design

Difference (Alternative
2 – Alternative 1)

Cost 3 PM 6 PM 3 PM
Complexity Cost 2 PM 1 PM -1 PM

Risk 0 BP 2 BP 2 BP

Benefit 6 BP 14 BP 8 BP

Total benefit 6 BP 12 BP 6 BP
Total cost 5 PM 7 PM 2 PM

Net value 6 BP – 5 PM 12 BP – 7 PM 6 BP – 2 PM
Total Benefit/ 1.20 BP/ PM 1.71 BP/ PM 3 BP/ PM

38

38

As can be seen in Table 3, the re-design has higher implementation cost than the
incremental improvement, but lower complexity cost because it reduces the software´s
complexity8. It can be expected that the re-design achieves a much higher improvement
of the usability and, therefore, more benefit, but also includes the risk to loose benefit.
The re-design has the higher total cost and higher total benefit. The net values are
difficult to compare, as cost and benefit are estimated in different metrics. The benefit-
cost-ratio is higher for the re-design. Criterion TB/ TC (right bottom field) also is in
favor of the re-design. Therefore, the re-design was chosen.

7 Summary

This work presents in which way the SIKOSA method aligns software specification and
decisions to functional as well as to non-functional quality- and business goals. The
following four activities align specification with goals and, therefore, are presented here:
the software requirements specification, the prioritization of these software
requirements, the definition of decision criteria for architectural design decisions, and
making architectural decisions. For aligning software specification and software with
goals consistently, it is important to execute these four activities in an integrated way, as
it is done by the SIKOSA method, unlike in any other method.

The four activities were executed in a case study where software usability requirements
were defined, the usability was assessed, the most important improvements identified,
and finally a decision was made between two alternatives: incremental improvement and
re-design of the user interface. This quantitative decision-support has shown to be a good
artefact for structuring discussions, documenting decision rationale and identifying
missing information. However, estimating and consensus-making among several
stakeholders demands more time compared to ad hoc decisions. Therefore, we
recommend applying such approaches mainly to such decisions which have an important
impact and/ or are difficult to make.

References

[AH04] Arora, A.; Hall, D.; Pinto, C.A.; Ramsey, D.; Telang, R.: An ounce of prevention vs. a
pound of cure: How can we measure the value of IT security solutions? Lawrence
Berkeley National Laboratory. Paper LBNL-54549. 2004.

[Al02] Alexander, I.: Misuse Cases Help to Elict Non-Functional Requirements.
http://easyweb.easynet.co.uk/~iany/consultancy/ misuse_cases/misuse_cases.htm

[AWP06] Aurum, A.; Wohlin, C.; Porter, A.: Aligning Software Project Decisions: A Case Study.
In: Int. J. of Software Eng. and Knowledge Eng., 16(6), 2006, pp. 795-818.

8 We remark that the next release was defined in a way that at realistic cost a good improvement could be
attained without any risk. A larger release would have caused more cost without significantly higher usability
improvement.

39

39

[BCV05] Bleistein, S.J.; Cox, K.; Verner, J.: Strategic Alignment in Requirements Analysis for
Organizational IT: an Integrated Approach. In: ACM Symposium on Applied
Computing, Santa Fe, 2005.

[BD04] Bruegge, B.; Dutoit, A.H.: Object-Oriented Software Engineering - Using UML,
Patterns, and Java, Prentice Hall, 2004.

[Be00] Beck, K.: Extreme programming explained, Addison-Wesley, Upper Saddle River, 2000.
[BE01] Brücher, H.; Endl, R.: Erweiterung von UML zur geschäftsregelorientierten

Prozessmodellierung. In: Proc. Referenzmodellierung RefMod2001, http://www.wi.uni-
muenster.de/is/Tagung/Ref2001/Kurzbeitrag13.pdf

[BJ06] Berander, P.; Jönsson, P.: Hierarchical Cumulative Voting (HCV) - Prioritization of
Requirements in Hierarchies. In: Int. J. of Software Eng. and Knowledge Eng., 16(6),
2006, pp. 819-849.

[CB95] Clements, P.; Bass, L.; Kazman, R.; Abowd, G.: Predicting Software Quality by
Architectural-Level Evaluation. In: Proc. 5th Int. Conf. on Software Quality ICSQ,
Maribor, Slovenia, 1995.

[Co01] Cockburn, A.: Writing effective use cases, Addison-Wesley, 2001.
[Da03] Davis, A.M.: The Art of Requirements Triage. In: IEEE Computer 36(3) 2003, pp.42-49.
[DC03] Denne, M.; Cleland-Huang, J.: Software by Numbers: Low-Risk, High-Return

Development. Prentice-Hall, 2003.
[DOK05] Dietrich, A.; Otto, S.; Kirn, S.: Simulationsmodell für logistische Prozesse in Mass-

Customization-Szenarien. In: Kirn et al. (Hrsg.): Kundenzentrierte Wertschöpfung mit
Mass Customization. 2005, pp. 118-147.

[DVF93] Dardenne, A.; van Lamsweerde, A.; Fickas, S.: Goal-Directed Requirements
Acquisition. In: Science of Computer Programming 20, 1993, pp. 3-50.

[GY01] Gross, F.; Yu, E.: Evolving system architecture to meet changing business goals: An
agent and goal-oriented approach. In: Proc. Fifth IEEE Int. Symposium on Requirements
Engineering, 2001, pp.316 - 317.

[He07] Herrmann, A.: Entscheidungen bei der Erfassung nicht-funktionaler Anforderungen.
Workshop "Erhebung, Spezifikation und Analyse nichtfunktionaler Anforderungen in
der Systementwicklung", SE 2007, Hamburg, Germany, 2007.

[HKD07] Herrmann, A.; Kerkow, D.; Doerr, J.: Exploring the Characteristics of NFR Methods – a
Dialogue about two Approaches. In: Proc. 13th Int. Workshop on Requirements
Engineering for Software Quality, Foundations of Software Quality – REFSQ 07,
Trondheim, Springer, 2007; pp. 320-334.

[HP05] Herrmann, A.; Paech, B.: Quality Misuse. In: Proc. 11th Int. Workshop on Requirements
Engineering: Foundation of Software Quality – REFSQ 05, Essener Informatik Beiträge,
Band 10, 2005; pp. 193-199.

[HP06] Herrmann, A.; Paech, B.: Benefit Estimation of Requirements Based on a Utility
Function. In: Proc. 12th Int. Workshop on Requirements Engineering: Foundation of
Software Quality – REFSQ 06, Essener Informatik Beiträge, Band 11, 2006; pp.249-250.

[HP07] Herrmann, A.; Paech, B.: MOQARE: Misuse-oriented Quality Requirements
Engineering. In: Requirements Engineering Journal, to be published.

[HPK06] Herrmann, A.; Paech, B.; Kirn, S.; Kossmann, D.; Müller, G.; Binnig, C.; Gilliot, M.;
Illes, T.; Lowis, L.; Weiß, D.: Durchgängige Qualität von Unternehmenssoftware. In:
Industrie Management, 6, 2006; pp. 59-61.

[HPP06] Herrmann, A.; Paech, B.; Plaza, D.: ICRAD: An Integrated Process for Requirements
Conflict Solution and Architectural Design. In: Int. J. of Software Eng. and Knowledge
Eng. 16(6) Dec. 2006, pp. 917-950.

[HRP06] Herrmann, A.; Rückert, J.; Paech, B.: Exploring the Interoperability of Web Services
using MOQARE. IS-TSPQ Workshop “First International Workshop on Interoperability
Solutions to Trust, Security, Policies and QoS for Enhanced Enterprise Systems”,
Bordeaux, 2006.

40

40

[IKO01] In, H.; Kazman, R.; Olson, D.: From Requirements Negotiation to Software
Architectural Decisions. In: Proc. from Software Requirements to Architectures
Workshop STRAW, 2001.

[ISO02] International Standards Organization ISO: Risk management – Vocabulary – Guidelines
for use in standards. ISO Guide 73, International Standards Organization, 2002.

[ISO13] International Standards Organization ISO: Norm DIN EN ISO 13407, Benutzer-
orientierte Gestaltung interaktiver Systeme.

[ISO92] International Standards Organization ISO: Norm DIN EN ISO 9241, Ergonomische
Anforderungen für Bürotätigkeiten mit Bildschirmgeräten.

[KAK01] Kazman, R.; Asundi, J.; Klein, M.: Quantifying the Cost and Benefits of Architectural
Decisions. In: Proc. Int. Conf. Software Eng., 2001; pp.297-306.

[KAB96] Kazman, R.; Abowd, G.; Bass, L.; Clements, P.: Scenario-based analysis of software
architecture. In: IEEE Software, 13(6), 1996; pp. 47-55.

[Ka96] Karlsson, J.: Software requirements prioritisation. In: Proc. 2nd Int. Conf. Requirements
Engineering, 1996; pp.110-116.

[KN92] Kaplan, R.S.; Norton, D.P.: The Balanced Scorecard: Measures That Drive Performance.
In: Harvard Business Review, 70(1), 1992; pp. 71-79.

[KL06a] Korherr, B.; List, B.: Aligning Business Processes and Software Connecting the UML 2
Profile for Event Driven Process Chains with Use Cases and Components. In: Proc. 18th
Int. Conf. on Advanced Inf. Systems Eng. CAiSE´06, Luxembourg, 2006: pp. 19-22.

[KL06b] Korherr, B.; List, B.: A UML 2 Profile for Event Driven Process Chains. A UML 2
Profile for Business Process Modelling. In: Proc. 1st Int. Workshop on Best Practices of
UML at the 24th Int. Conf. on Conceptual Modeling ER 2005, Klagenfurt 2005.

[KWR98] Karlsson, J.; Wohlin, C.; Regnell, B.: An evaluation of methods for prioritizing software
requirements. In: Information and Software Technology 39, 1998; pp. 939-947.

[La01] van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In:
Proc. of 5th Int. Symposium on Requirements Eng., 2001; pp. 249-263.

[La02] Lauesen, S.: Software Requirements - Styles and Techniques. Addison-Wesley, 2002.
[LRV99] Lassing, N.; Rijsenbrij, D.; van Vliet, H.: On Software Architecture Analysis of

Flexibility, Complexity of Changes: Size Isn´t Everything. In: Proc. Second Nordic
Software Architecture Workshop NOSA 99, 1999; pp. 1103-1581.

[Lu00] Luftman, J.N.: Assessing business/IT alignment maturity. In:Comm. of AIS, 4(14), 2000.
[LW00] Leffingwell, D.; Widrig, D.: Managing Software Requirements - A Unified Approach,

Addison-Wesley, Reading, Massachusetts, USA, 2000.
[No04] Noran, O.S.: Business Modelling: UML vs. IDEF. Griffith University, School of

Computing and Information Technology, 2004.
http://www.cit.gu.edu.au/~noran/Docs/UMLvsIDEF.pdf (last visit: 12 nov 2007)

[PK03] Paech, B.; Kohler, K.: Task-driven Requirements in object-oriented Development. In
(Leite, J.; Doorn, J., eds.): Perspectives on Requirements Engineering, Kluwer Academic
Publishers, 2003.

[PSR04] Papadacci, E.; Salinesi, C.; Rolland, C.: Payoff Analysis in Goal-Oriented Requirements
Engineering. In: Proc. 10th Int. Workshop on Requirements Eng.: Foundation of
Software Quality – REFSQ04, 2004.

[REP03] Ruhe, G.; Eberlein, A.; Pfahl, D.: Trade-Off Analysis For Requirements Selection. In:
Int. J. of Software Eng. and Knowledge Eng. 13 (4), 2003; pp. 345-366.

[RHN01] Regnell, B.; Höst, M.; Natt och Dag, J.; Beremark, P.; Hjelm, T.: An Industrial Case
Study on Distributed Prioritisation in Market-Driven Requirements Engineering for
Packaged Software. In: Requirements Eng. 6, 2001; pp. 51–62.

[RS05] Rolland, C.; Salinesi, C.: Modeling Goals and Reasoning with Them. In (Aurum, A.;
Wohlin, C., Eds.): Engineering and Managing Software Requirements, Springer, Berlin,
Heidelberg, 2005.

[Sa80] Saaty, T.L.: The Analytic Hierarchy Process, McGraw-Hill, New York, 1980.

41

41

[Sc01] Scheer, A.-W.: ARIS – Modellierungsmethoden, Metamodelle, Anwendungen. 4th

edition, Springer, Berlin, 2001.
[SH00] Scheer, A.; Habermann, F.: Making ERP a success. In: Communications of the ACM,

43(3), 2000; pp. 57-61.
[SKK97] Stylianou, A.C.; Kumar, R.L.; Khouja, M.J.: A total quality management-based systems

development process. In: ACM SIGMIS Database, 28(3), June 1997, pp. 59-71.
[SO00] Sindre, G.; Opdahl, A.L.: Eliciting Security Requirements by Misuse Cases. In: TOOLS

Pacific, 2000; pp. 120-131.
[SO01] Sindre, G.; Opdahl, A.L.: Templates for Misuse Case Description. In: Proc. 7th Int.

Workshop on Requirements Eng.: Foundation of Software Quality – REFSQ 01, Essener
Informatik Beiträge Band 6, 2001; pp. 125-136.

[So01] Sommerville, I.: Software Engineering, Pearson Education Deutschland, 6th ed. 2001.
[Sy07] Sysiphus http://sysiphus.in.tum.de/, 2007 (last visit: 12 nov 2007)
[Wi99] Wiegers, K.E.: First things first: prioritizing requirements. In: Software Development

7(9), September 1999.
[Wi02] Wiegers, K.E.: Success Criteria Breed Success. In: The Rational Edge, 2(2), 2002.
[WKK07] Weiß, D.; Kaack, J.; Kirn, S.; Gilliot, M.; Lowis, L.; Müller, G.; Herrmann, A.; Binnig,

C.; Illes, T.; Paech, B.; Kossmann, D.: Die SIKOSA-Methodik – Unterstützung der
industriellen Softwareproduktion durch methodisch integrierte
Softwareentwicklungsprozesse. In: Wirtschaftsinformatik 49(3), 2007; pp. 188-198.

[XMC04] Xie, N.; Mead, N.R.; Chen, P.; Dean, M.; Lopez, L.; Ojoko-Adams, D.; Osman, H.:
SQUARE Project: Cost/Benefit Analysis Framework for Information Security
Improvement Projects in Small Companies. Technical Note CMU/SEI-2004-TN-045,
Software Engineering Institute, Carnegie Mellon University, 2004.

[YM98] Yu, E.; Mylopoulos, J.: Why Goal-Oriented Requirements Engineering? In: Proc. 4th Int.
Workshop on Requirements Engineering for Software Quality, Foundations of Software
Quality – REFSQ 1998, Pisa, Presses Universitaires de Namur, 1998, pp. 15-22

42

42

