
Formal Verification of Web Applications

Christian Ammann

University of Applied Sciences Osnabrück
Post Office Box 1940, 49009 Osnabrück

c.ammann@hs-osnabrueck.de

Abstract

Web applications are executed in a browser environ-
ment, widely used and can be developed with the Google
Web Toolkit (GWT). This paper presents a domain-
specific language (DSL) for modeling GWT web ap-
plication and an automated transformation of the DSL
into Promela which is the input language of the model
checker Spin. Spin checks the complete state space of
the corresponding web application model, informs the
developer about possible errors and therefore increases
software stability and quality.

1 Introduction

The Google Web Toolkit [1] is an open source framework
for the development of web applications. Static elements
are implemented with HTML while dynamic elements
are developed with Java. The client side of an applica-
tion is automatically transformed into JavaScript. The
advantage of this approach is: Almost the complete web
application can be developed in Java and therefore the
existing tool support for Java like IDEs, debuggers, etc.
is available. A GWT application can use remote proce-
dure calls (RPCs) for the communication with a server
(e.g. Tomcat). RPCs are asynchronous and therefore
the GWT provides a special callback object.

Besides classical testing, a model checker can be used
to verify whether a software system (e.g. a stock trading
web application) meets its requirements. For a success-
ful verification, the web application is transformed into
the model checker’s input language and enriched with
formal requirements. Afterwards, the model checker ver-
ifies the complete state space of the model and typically
generates an error path if a requirement is not met. This
approach leads to the following problem: A GWT ap-
plication is written in Java and has to be transformed
into the model checker input language. Therefore, it is
necessary after each modification of the GWT applica-
tion to validate whether both models (Java and model
checker input language) are still equivalent.

We solve this problem in section 2 and present a
domain-specific language (DSL) for the description of
GWT applications. Afterwards, section 3 describes
a transformation algorithm for the DSL to Promela.
Promela is the input language of the award winning [2]
model checker Spin [3]. The related work is presented
in section 4. Ideas about further work are described in
section 5.

This work is part of the project KoverJa [4] which is
supported by the German Federal Ministry of Education
and Research (BMBF).

2 A DSL for Web Applications

This section introduces a simple GWT application and
derives from it a DSL for the description of web appli-
cations. The example is a simple login mask which con-
sists of a button and two text boxes. A user enters his
username and a password. Both are transmitted to the
webserver with a remote procedure call. The server ver-
ifies whether the username and password pair is correct
and associates the result with the corresponding session.
Afterwards, a new html page is opened which displays
the username if the login was successful or otherwise
an error message. The complete GWT Java project is
available at [5].
The DSL for the implementation of the case study

consists of the following parts: The client side is a set
of (HTML) pages. A page contains GUI elements (e.g.
a buttons). Furthermore, it can provide an onLoad()
function which is executed when the page is loaded. A
client has a unique session id which is bound to a session
object. The session object contains a set of variables
which can be accessed by the server. The server is a
set of methods which are called as RPCs by the client.
RPCs are asynchronous and therefore a reference to a
callback object is added as an additional parameter to
the parameter list. Each callback object contains an
onSuccess() method which is executed when RPC was
successful. The following listing contains the server side
of the login web application and demonstrates the GWT
DSL:

session{
bool v a l i d u s e r = fa l se ;

}

server{
bool ve r i f yLog in (string user ,
string password){

i f (user . equa l s (” c h r i s t i a n ”) &&
password . equa l s (”ammann”)){

v a l i d u s e r=true ;
}
else {

v a l i d u s e r=fa l se ;
}
// re turn s e s s i on v a r i a b l e
return v a l i d u s e r

}
}

Listing 1: Server Side DSL GWT Example

The session contains a boolean variable which is set to
true after a successful login. The server provides the
RPC verifyLogin() with two parameters: username and

password. The function evaluates whether both are cor-
rect (the only valid username/password pair in this ex-
ample is christian/ammann) and stores the result in
valid user. The complete DSL example is available at
[5].

3 Transformation to Promela

We presented in the last section a domain-specific lan-
guage for the description of GWT web applications.
This section provides a transformation algorithm from
the DSL into Promela.
We use abstraction for the implementation of strings:

Promela supports enumerations (so called mtypes). We
generate an enumeration which elements represent the
different strings of a model. The strings in listing 1 are
transformed into the following Promela code:

mtype{ ch r i s t i a n , ammann, unknown}
Listing 2: Strings in Promela

Besides christian and ammann, a user could enter some-
thing else in a textbox. We model this class of input
strings with the element unknown.
The next listing demonstrates the implementation of

the get() method which is provided by each textbox ob-
ject:

in l ine get (r e t){
i f
: : r e t = c h r i s t i a n ;
: : r e t = ammann ;
: : r e t = unknown ;
f i ;

}
Listing 3: Get() Method in Promela

The if-block sets non-deterministically christian, am-
mann or unknown which has one major consequence:
The model checker verifies the system behavior for all
possible return values of the function.
For a successful transformation of the client side, the

question regarding the callback object is: When is the
onSuccess() method executed? Empirical measurements
have shown to the following behavior (implemented with
pseudo code):

button a behaviour :
rpc1 (ca l l ba ck1) ;
execute statements ;
rpc2 (ca l l ba ck2) ;
execute more statements ;
onSuccess () o f c a l l ba ck1 ;
onSuccess () o f c a l l ba ck2 ;

Listing 4: Runtime of Callback objects

The behaviour block of button a consists of some regular
statements (e.g. variable assignments) and two RPCs.
The onSuccess() methods are executed deterministically
at the end of the behaviour block. The complete trans-
formation example of the login web application (espe-
cially the server side) is available at [5].

4 Related Work

One key feature of web applications is the pending
amount of clients which are connected to a server. Bauer
et al. [6] describe dynamic communication systems
(DCS) and use as an example a communication protocol
for cars.
Another interesting approach by Leung et al. [7] de-

scribes a modeling and verification approach for web
pages. It proposes to model web pages with statecharts.

5 Further Work

Further work will be the development of the missing
translation algorithm into a GWT Java project and the
corresponding transformation templates. The generated
Promela code reflects the behavior of the Google Chrome
browser. Support for other browsers like Firefox and
Internet Explorer is still missing and has to be imple-
mented.

6 Acknowledgement

I would like to express my gratitude to Stephan Kleuker
and Elke Pulvermüller for supporting this work.

References

[1] Google Web Toolkit. http://code.google.com/

webtoolkit; accessed 18-August-2011.

[2] System Software Award. http://awards.acm.org/
homepage.cfm?awd=149; accessed 18-August-2011.

[3] Gerard Holzmann. The Spin Model Checker: Primer
and reference Manual. Addison-Wesley Professional,
2003.

[4] KoverJa Projekt - Korrekte verteilte Java Ap-
plikationen. http://www.edvsz.hs-osnabrueck.

de/kleuker/CSI/KoverJa; accessed 14-September-
2010; in german.

[5] GWT Login Case Study, Xtext Grammar and DSL
Example. http://home.edvsz.fh-osnabrueck.

de/chammann/gwt; accessed 18-August-2011.

[6] Jörg Bauer, Ina Schaefer, Tobe Toben, and Bernd
Westphal. Specification and verification of dynamic
communication systems. In ACSD ’06: Proceedings
of the Sixth International Conference on Application
of Concurrency to System Design, pages 189–200,
Washington, DC, USA, 2006. IEEE Computer Soci-
ety.

[7] Karl R. P. H. Leung, Lucas Chi Kwong Hui, S. M.
Yiu, and Ricky W. M. Tang. Modeling web naviga-
tion by statechart. In 24th International Computer
Software and Applications Conference, COMPSAC
’00, pages 41–47, Washington, DC, USA, 2000. IEEE
Computer Society.

