
An extensible client platform for eID, signatures and more

Tobias Wich1
· Moritz Horsch2 · Dirk Petrautzki3 · Johannes Schmölz1

Detlef Hühnlein1 · Thomas Wieland3 · Simon Potzernheim3

1 ecsec GmbH, Sudetenstraße 16, 96247 Michelau,

{tobias.wich,johannes.schmoelz,detlef.huehnlein}@ecsec.de

2 TU Darmstadt, Hochschulstraße 10, 64289 Darmstadt,

horsch@cdc.informatik.tu-darmstadt.de

3 Hochschule Coburg, Friedrich-Streib-Str. 2, 96450 Coburg

{petrautzki,thomas.wieland,potzernheim}@hs-coburg.de

Abstract: The present paper introduces an extensible client platform, which can be
used for eID, electronic signatures and many more smart card enabled applications.

1 Introduction

Against the background of various electronic identity (eID) card projects around the globe

there have been numerous initiatives in the area of research, development and standard-

ization of eID cards, smart card middleware components and related services. Neverthe-

less, whenever a new eID project emerges, new software is often developed from scratch.

This happens despite all similarities of the systems and requirements. The present paper

introduces a modular and extensible client platform, which can be extended for the use

with eID, electronic signatures and many other smart card related applications. The de-

sign of this extensible platform is a refinement of the architecture of the Open eCard App

[HPS+12], which in turn is based on the eCard-API-Framework (BSI-TR-03112) and its

integrated international standards, such as ISO/IEC 24727 [ISO08a, ISO08b] and OASIS

Digital Signature Services [Dre07]. The design and implementation of the platform has

been based on previous work [Hor11, Pet11] and realized as a joint effort of industrial and

academic experts within different projects, such as ID4health1, SkIDentity2, FutureID3,

and Open eCard4.

The remainder of the paper is structured as follows: Section 2 provides an overview of the

proposed client platform. Section 3 describes the extension points of the client platform.

Section 4 presents the design of the add-on framework and its mechanisms to dynamically

load missing functionality. Section 5 closes the paper with an outlook on the next steps

and future development.

1See http://www.id4health.de.
2See http://www.skidentity.de.
3See http://www.futureid.eu.
4See http://www.openecard.org.

55



2 Overview of the extensible architecture

The proposed client platform is aligned to the eCard-API-Framework (BSI-TR-03112)

which integrates major international standards (e.g. [ISO08a, ISO08b, Dre07]) in order

to provide a common and homogeneous interface for a standardized usage of different

smart cards. The architecture depicted in figure 1 is designed to separate the overall func-

tionality of an eID application in suitable components, reuse of common modules and to

provide means for expandability. The modular approach and the platform-independent im-

plementation of the core modules in Java allow the Open eCard App to be used on various

computing platforms, such as desktop systems running on Windows, Linux and Mac OS X

as well as mobile systems running Android for example.

Figure 1: Extensible architecture of eID-client-platform

The components of the extensible eID platform are described in the following:

Interface Device (IFD) The IFD provides a generalized interface for communication

with arbitrary card terminals and smart cards according to ISO/IEC 24727-4 [Fed12b,

ISO08b]. It abstracts from specific interfaces and physical properties like contactless in-

terfaces. Furthermore it provides expandability for the integration of secure channel estab-

lishment protocols which protect the communication between the eID client and the smart

card.

56



Event Manager The Event Manager is responsible for managing card terminal and card

events. It periodically asks the IFD for the current status of terminals and cards and de-

termines changes like the connection and disconnection of card terminals and smart cards

by comparing status reports over different time periods. Furthermore, the Event Manager

performs the card recognition to determine the type and the functionality of the card as

explained in section 3.2.

Service Access Layer (SAL) The SAL provides a generic interface for common smart

card services according to ISO/IEC 24727-3 [ISO08a, Fed12c], which allows to manage

data that is stored on the card for example. In detail, the SAL comprises Connection

Services, Card Application Services, Named Data Services, Crypto Services, Differential

Identity Services and means for accessing card application services in an authorized man-

ner. Furthermore, the SAL provides an interface for integrating arbitrary authentication

protocols, which provides expandability without changing other parts of the implementa-

tion (see section 3.3).

Dispatcher The Dispatcher provides a centralized communication component for han-

dling incoming and outgoing messages.

Add-ons Add-ons provide additional functionality to the basic eID platform. Signature

functionality and PIN Management, for instance, can be realised as an add-on to provide

additional functionality and allow customisation. The Add-on Registry provides a service

to search and retrieve add-ons. Such a registry can, e.g., be realised based on the Java Net-

work Lauching Protocol (JNLP) [Her11]. After an add-on is loaded, the Add-on Manager

takes over the management of the add-on instances and enforces the compliance with the

defined security policy by a sandbox mechanism.

Bindings The Binding component comprises modules for message transport. The com-

ponents implement a particular protocol like HTTP or SOAP to transmit messages from

external applications to the client.

Crypto The Crypto component encapsulates common cryptographic functions, which

are used by other components. It is based on the Bouncy Castle crypto library [The]

which makes it easy to port it to platforms without support for the full Java Cryptography

Architecture (JCA) [Orab], such as Android for example.

Graphical User Interface (GUI) The GUI component provides an abstract framework

to develop user interfaces and interactions. This allows the exchange of GUI implemen-

tations and therefore providing platform-specific GUI implementations, while leaving the

other components unchanged.

57



3 Extension Points

This section describes the extension mechanisms of the eID platform, which allows en-

hancing the application’s functionality on different levels. In detail, it allows adding ar-

bitrary protocols to the IFD and SAL component, supporting various card terminals and

smart cards as well as enhancing the application functionality by add-ons.

In general, we use the term add-on to describe a software component which enhances the

functionality of the basic eID platform. Furthermore, we distinguish between plug-in and

extension.

Plug-ins depend on the context in which the user uses the application. Performing an

authentication to a service using a particular smart card, for instance, requires a plug-in

which is capable of providing such functionality. Subsequently, plug-ins require a com-

munication with bindings to interact with external applications and services. Furthermore,

we distinguish between IFD, SAL and application plug-ins, which are described in detail

in the following sections.

Extensions are independent from the context. Moreover, they are directly integrated into

the user interface and can be executed by the user. For instance, an add-on that provides a

PIN change functionality for smart cards is classified as an extension.

3.1 IFD Plug-ins

The IFD provides a generalized interface for communication with arbitrary smart cards

and card terminals. It also can be extended by plug-ins, i.e. protocols which perform

a user authentication and/or establish a secure channel between a smart card and a card

terminal to protect the communication from being eavesdropped.

Each protocol must have a unique identifier in form of a URI. The URI must be associ-

ated with the actual implementation as described in section 4.1. In addition, each proto-

col plug-in must implement the IFD Protocol Interface and must define protocol-specific

AuthenticationProtocolData used in the EstablishChannel call5 and cor-

responding response message.

The Password Authenticated Connections Establishment (PACE) protocol is one example

of a protocol which is executed in the IFD layer. It is a password-based protocol that per-

forms a user authentication, based on a PIN, and establishes a Secure Messaging channel

(cf. [ISO]) to ensure that only the legitimate user can use the card and that the communi-

cation is encrypted and integrity protected. The details of the PACE-protocol are specified

in BSI-TR-03110 [Fed12a].

ISO/IEC 24727-4 Interface An IFD-protocol will be executed by an EstablishChannel

IFD API call. The function call includes a SlotHandle to address an established con-

5See http://ws.openecard.org/schema/ISOIFD-Extension.wsdl.

58



nection and a protocol-specific extended AuthenticationProtocolData element.

Java Interface The IFDProtocol interface defines functions for IFD protocols (cf.

figure 2). Each protocol must implement the establish function that executes the pro-

tocol. The function gets as input an EstablishChannel request that includes protocol-

specific data. The parts which are necessary to communicate with the eID application are

handed over to the implementation in the init function. The context ctx contains the

user consent implementation, which allows a protocol to perform user interaction, e.g.

to receive PIN entries. In addition, the interface specifies the functions applySM and

removeSM to apply and remove Secure Messaging. The establish function returns

an EstablishChannelResponse. The IFDProtocolFactory provides a fac-

tory class which also proxies the protocol interface. The usage of the class name decou-

ples the actual loading of the class and prevents execution of plug-in code outside of the

sandbox.

Figure 2: IFD-Protocol-Interface UML diagram

3.2 CardInfo Files

In order to support a broad range of smart cards, the eID platform supports CardInfo files

(CIF) according to [ISO08a]. A CIF is an XML file that describes the data structure and

the functionality of smart cards in a standardized way. Besides the abstract definition of

the card, it also contains information how to recognize the specific card type.

To provide a sophisticated recognition of smart cards it is prudent engineering practice

to construct a decision tree based on the set of available CIFs (cf. [Wic11]). While the

construction of the tree could be performed by the eID application on demand, this task

is better performed by a central CardInfo repository, which performs the construction and

only distributes the decision tree (cf. [Fed12e]). To make the eID application capable of

recognizing new smart cards, only the corresponding CIFs and an updated version of the

decision tree have to be added.

59



3.3 SAL Plug-ins

The SAL provides a generic interface for common smart card services comprising different

services, such as the Crypto Services and the Differential Identity Services. The SAL

can be extended by plug-ins, which provide implementations of protocols for the Crypto

Services and the Differential Identity Services [Fed12d, Section 4] as required for the use

of specific signature cards and electronic identity cards for example.

The plug-in concept is quite similar to the one that is used in the IFD layer (cf. section

3.1). Each SAL protocol must define a unique identifier (URI). In contrast to the IFD, the

SAL supports protocols with multiple steps and allows the definition of more sophisticated

user interfaces including a sequence of interaction steps to represent information dialogues

and general user consents.

One example of a SAL protocol is the Extended Access Control (EAC) protocol which is

used for the authentication with the german eID card. The protocol-specific messages are

specified in [Fed12d, Section 4.6].

ISO/IEC 24727-3 Interface A protocol execution is triggered by invoking an action

within the Crypto Services or Differential Identity Services API (cf. [ISO08b, section

3.5 and 3.6]). The functions includes an AuthenticationProtocolData element,

which is extended in a protocol-specific manner.

Figure 3: SAL Protocol Interface UML diagram

Java Interface Each protocol must implement the SALProtocol interface. A con-

venience abstraction which works for the common protocol flows is realized in the class

SALProtocolBaseImpl. An internal data object is used for the exchange of data be-

tween the different protocol steps. A protocol step is represented by the ProtocolStep

interface which defines a FunctionType defining a Crypto or Differential Identity Ser-

vice and a perform function to execute the step. The control of the application flow is

performed automatically after being triggered by incoming Crypto or Differential Identity

Service requests. The instantiation is performed through the SALProtocolFactory

60



similar to the IFD protocols explained in section 3.1.

3.4 Application Plug-ins

Application plug-ins provide a mechanism to add additional functionality to the eID ap-

plication with which external applications can communicate. Depending on the type of

the underlying binding, this could be a browser, a PKCS#11 module or even a remote

application.

Protocol bindings realize the connection to the external world. While a broad variety of

transport protocols could be supported, the most obvious choices are HTTP and SOAP,

as they are stipulated by [Fed12d, Section 3.2] for example. Given the properties of the

activation mechanism, HTTP and SOAP, as well as similar transport protocols, the abstract

requirements for a protocol binding are given as follows: A protocol binding must support

1. a request-response semantic,

2. a mapping mechanism to identify the appropriate plug-in for a request,

3. messages comprising a body, named parameters and attachments,

4. an error delivery mechanism, and

5. a redirect semantic.

Figure 4: Application-Plug-in-Interface UML diagram

Figure 4 shows the interfaces and the data model of the application plug-ins. On the plug-

in side it is easy to see that all properties are fulfilled. The interface AppPluginAction

provides an execute function with a strict data oriented semantic, meaning no callback

61



code can be injected for asynchronous responses. The second property is fulfilled by a

named identification of the action which is discussed in detail in section 4.1. The data

structures for body and attachments can be seen on the right side of the diagram. Named

parameters have no particular ordering and no special type so a string of characters can

represent either key and value. These three elements form the input parameters of said

execute function and are part of the result. The body element carries exactly one DOM

node. This representation has the advantage that it can carry strings as well as more com-

plex XML elements. That makes it suitable to provide the content of a SOAP body, JSON

data converted to an XML representation or string based entities. Attachments are included

to transport binary files. The data structure is modelled to support the most important fea-

tures of MIME messages such as Multipart MIME messages (cf. [FB96, Section 5.1]).

The fourth and fifth requirement are fulfilled by providing predefined response codes and

auxiliary data for the specific type of action. In case of an error, a localized message may

be attached to the result. A redirect needs a redirect target value in the auxiliary data.

It is up to the receiving application how to interpret and perform the redirect. The open

character of the auxiliary data makes it easy to add new capabilities for further use cases

to the bindings without the need to change the Application Binary Interface (ABI) of the

interface.

While different transport protocols (e.g. HTTP on localhost, LiveConnect, SOAP) may be

used to realize bindings for the different add-ons (e.g. eID Activation, Status, Signature

PKCS#11) we will explain the general concept using the example of a signature plug-in

with the localhost binding according to BSI-TR-03112-7 [Fed12d] in the following.

Given the containers parameters, body and attachments, the plug-in can define its interface.

A signature plug-in can be modelled in two ways. Either via an RPC-style interface where

the properties of the plug-in are transported in parameters, or via an OASIS DSS [Dre07]

like interface where the properties are transported as a structured object in the body.

Suppose the variant with the simple parameters is used, the following HTTP request (list-

ing 1) and response (listing 2) messages can be modelled. The simple model might be

desirable when the signature functionality is limited to a few base cases and thus the full

OASIS DSS capabilities are not needed.

1 POST /signature?signatureType=XAdES&cardType=... HTTP/1.1

2

3 Content-Type: multipart/form-data; boundary=AaB03x

4

5 --AaB03x

6 Content-Disposition: form-data; name="files"; filename="data.xml"

7 Content-Type: text/xml

8

9 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

10 <Data xmlns="myns">to be signed</Data>

11 --AaB03x--

Listing 1: RPC-Style Sign Request

In order to sign to a document, at least the signature type and the data to be signed is

required. To take away the responsibility of the user to select a signing entity, e.g. a specific

62



1 HTTP/1.1 200 OK

2

3 Content-Type: Multipart/mixed; boundary=AaB03x

4

5 --AaB03x

6 Content-Disposition: attachment; name="files"; filename="data.xml"

7 Content-Type: text/xml

8

9 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

10 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

11 <SignedInfo>...</SignedInfo>

12 <SignatureValue>...</SignatureValue>

13 <KeyInfo>...</KeyInfo>

14 <Object Id="dataId">

15 <Data xmlns="myns">to be signed</Data>

16 </Object>

17 </Signature>

18 --AaB03x--

Listing 2: RPC-Style Sign Response

smart card, this information may be given as well. The parameters signatureType and

cardType as given in listing 1 line 1 represent the latter choices. The document itself

is included as a named part shown in line 5 ff. in the HTTP body. The representation

as multipart/form-data according to [RLJ99, Section 17] has been chosen so that

typical browsers can issue requests easily. Named parts can be matched to the attachment

type of the interface as well as to the body. To resolve the ambiguity, the body can simply

be an attachment with a special name value, but other schemes may be allowed as well to

capture other communication patterns.

1 POST /signature?cardType=... HTTP/1.1

2

3 Content-Type: application/xml

4 Content-Length: ...

5

6 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

7 <dss:SignRequest xmlns:dss="urn:oasis:names:tc:dss:1.0:core:schema">

8 <dss:InputDocuments>...</dss:InputDocuments>

9 <dss:Document>

10 <Data xmlns="myns">to be signed</Data>

11 </dss:Document>

12 <dss:OptionalInputs>

13 <dss:SignatureType>urn:ietf:rfc:3275</dss:SignatureType>

14 </dss:OptionalInputs>

15 </dss:SignRequest>

Listing 3: OASIS DSS-Style Sign Request

A more sophisticated data exchange for a signature plug-in is shown in listing 3. The

example uses OASIS DSS SignRequest messages to specify what kind of signature

should be performed and what should be signed. The signing entity is chosen as in the

previous example. The example also shows that the request is nearly identical to a SOAP

63



request, so the parameters can be mapped by either the localhost binding or a SOAP bind-

ing.

3.5 Application Extensions

Extensions enhance – similar to plug-ins – the basic eID platform and provide additional

functionality, but they do not depend on the context in which the eID application is used.

Further, extensions are included into the user interface and can be started directly by the

user. Similar to application plug-ins, the AppExtensionAction interface, as shown

in figure 5, contains an execute function. However, this function does not have any

parameters nor does it have a result. Therefore, it cannot be used with a binding and only

be triggered manually.

Figure 5: Application Extension Interface UML diagram

4 Add-on Framework

4.1 Add-on Anatomy

Add-ons are described by the data model shown in figure 6. This model is the represen-

tation of the XML structure of an add-on’s manifest file. It contains general information

such as the name, the textual description and configuration entries for changeable settings

of the add-on, and its contained actions which represent the interfaces shown in section 3.

The settings are saved in an add-on specific storage location and are loaded as Java prop-

erties by the add-on framework. Each action has one or more entries which identify it

unambiguously. The IFD and SAL protocol plug-ins are identified by their protocol URI,

whereas the application extensions and plug-ins are identified by the add-on id and action

id, or resource name respectively. A reference to the action class makes it possible for the

framework to find and load the implementation dynamically.

Based on the add-on manifest, bundles can be formed which can be integrated into the base

application with zero configuration overhead on the user side. The structure of a bundle

is largely dictated by the Java archive (JAR) file specification [Oraa]. A single JAR file

64



Figure 6: Add-on Description data model UML diagram

bundles the add-on and all dependent libraries. The manifest describing the add-on must

be present in the META-INF directory with the name addon.xml.

4.2 Secure Retrieval and Execution

When a request message is received, the AddonRegistry (cf. figure 7) can be con-

sulted to retrieve an applicable add-on for the requested resource. If an applicable add-on

is found, it’s JAR file will then be downloaded and a ClassLoader for subsequently

loading the plug-in in a secure manner is returned. The ClassLoader will then be used

in the factory responsible for the plug-in’s type to load the class files.

Furthermore, a custom security policy implementation is set in the JRE and will there-

fore automatically be consulted every time a security relevant operation (e.g. reflection,

classloader creation, filesystem access etc.) is performed. This policy allows to differenti-

ate between signed add-ons, add-ons from a trusted origin and add-ons from an untrusted

origin. Depending on the trust level, the add-ons may be granted different privileges.

By the use of privileged actions in a AccessControler.doPrivileged() call,

trusted add-ons are permitted to call functions of the eID application that themselves do

security relevant operations which the add-on would otherwise not have the appropriate

rights for and therefore would fail.

65



Figure 7: Plug-in Manager and Registry UML diagram

5 Conclusion

The new add-on mechanism of the eID application proposed in the present paper provides

an extensible framework which makes it easy to build tailormade eID and similar smart

card based applications without re-developing basic functionality again from scratch. The

proposed platform provides a set of well defined extension points and the initially provided

modules ensure that existing installations can be utilized without modifications. With an

App-Store like distribution method, it will be easy for third party vendors to provide their

own add-ons. Paired with restrictive security measures, the App-Store model does not

sacrifice the security and privacy of the user.

66



References

[Dre07] Stefan Drees. Digital Signature Service Core Protocols, Elements, and Bindings, Ver-
sion 1.0. OASIS Standard, 2007. http://docs.oasis-open.org/dss/v1.0/
oasis-dss-core-spec-v1.0-os.pdf.

[FB96] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part
Two: Media Types. RFC 2046, November 1996. https://www.ietf.org/rfc/
rfc2046.txt.

[Fed12a] Federal Office for Information Security (Bundesamt für Sicherheit in der Information-
stechnik). Advanced Security Mechanism for Machine Readable Travel Documents
- Extended Access Control (EAC), Password Authenticated Connection Establishment
(PACE), and Restricted Identification (RI). Technical Directive (BSI-TR-03110), Version
2.10, 2012. http://docs.ecsec.de/BSI-TR-03110.

[Fed12b] Federal Office for Information Security (Bundesamt für Sicherheit in der Information-
stechnik). eCard-API-Framework – IFD-Interface. Technical Directive (BSI-TR-03112),
Version 1.1.2, Part 6, 2012. http://docs.ecsec.de/BSI-TR-03112-6.

[Fed12c] Federal Office for Information Security (Bundesamt für Sicherheit in der Informa-
tionstechnik). eCard-API-Framework – ISO24727-3-Interface. Technical Direc-
tive (BSI-TR-03112), Version 1.1.2, Part 4, 2012. http://docs.ecsec.de/

BSI-TR-03112-4.

[Fed12d] Federal Office for Information Security (Bundesamt für Sicherheit in der Information-
stechnik). eCard-API-Framework – Protocols. Technical Directive (BSI-TR-03112),
Version 1.1.2, Part 7, 2012. http://docs.ecsec.de/BSI-TR-03112-7.

[Fed12e] Federal Office for Information Security (Bundesamt für Sicherheit in der Infor-
mationstechnik). eCard-API-Framework – Support-Interface. Technical Direc-
tive (BSI-TR-03112), Version 1.1.2, Part 5, 2012. http://docs.ecsec.de/

BSI-TR-03112-5.

[Her11] A. Herrick. JSR 56: Java Network Launching Protocol and API. Maintenance Release 6,
2011. http://jcp.org/en/jsr/detail?id=56.

[Hor11] Moritz Horsch. MONA – Mobile Authentication with the new German eID-
card (in German). Master-Thesis, Technische Universität Darmstadt, 2011.
http://www.cdc.informatik.tu-darmstadt.de/mona/pubs/

201107_MA_Mobile%20Authentisierung%20mit%20dem%20neuen%

20Personalausweis%20(MONA).pdf.

[HPS+12] Detlef Hühnlein, Dirk Petrautzki, Johannes Schmölz, Tobias Wich, Moritz Horsch,
Thomas Wieland, Jan Eichholz, Alexander Wiesmaier, Johannes Braun, Florian Feld-
mann, Simon Potzernheim, Jörg Schwenk, Christian Kahlo, Andreas Kühne, and Heiko
Veit. On the design and implementation of the Open eCard App. In Sicherheit 2012, GI-
LNI, 2012. http://subs.emis.de/LNI/Proceedings/Proceedings195/
95.pdf.

[ISO] ISO/IEC 7816. Identification cards – Integrated circuit cards – Part 1-15. International
Standard.

[ISO08a] ISO/IEC. Identification cards – Integrated circuit cards programming interfaces – Part 3:
Application programming interface, ISO/IEC 24727-3. International Standard, 2008.

67



[ISO08b] ISO/IEC. Identification cards – Integrated circuit cards programming interfaces – Part 4:
API Administration, ISO/IEC 24727-4. International Standard, 2008.

[Oraa] Oracle Inc. JAR File Specification. http://docs.oracle.com/javase/6/

docs/technotes/guides/jar/jar.html.

[Orab] Oracle Inc. Java Cryptographic Architecture (JCA). http://www.javasoft.com/
products/jdk/1.2/docs/guide/security/CryptoSpec.hml.

[Pet11] Dirk Petrautzki. Security of Authentication Procedures for Mobile Devices (in German).
Master-Thesis, Hochschule Coburg, 2011.

[RLJ99] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 Specification. W3C Rec-
ommendation 24 December 1999, 1999. http://www.w3.org/TR/html401/.

[The] The Legion of the Bouncy Castle. Bouncy Castle API. http://www.

bouncycastle.org/.

[Wic11] Tobias Wich. Tools for automated utilisation of Smart-Card Descriptions. Master-Thesis,
Hochschule Coburg, 2011.

68


