
Staged Composition Synthesis

Boris Düdder Moritz Martens Jakob Rehof

boris.duedder@cs.tu-dortmund.de

moritz.martens@cs.tu-dortmund.de

jakob.rehof@cs.tu-dortmund.de

Fakultät für Informatik

Technischen Universität Dortmund 44227 Dortmund

Abstract: A framework for composition synthesis is provided in which metalanguage
combinators are supported and the execution of synthesized programs can be staged
into composition-time code generation (stage 1) and run-time execution (stage 2). By
extending composition synthesis to encompass both object language (L1) and me-
talanguage (L2) combinators, composition synthesis becomes a powerful and flexible
framework for the generation of L1-program compositions. A system of modal in-
tersection types is introduced into a combinatory composition language to control the
distinction between L1- and L2-combinators at the type level, thereby exposing the
language distinction to composition synthesis. We provide a theory of correctness of
the framework which ensures that generated compositions of component implementa-
tions are well typed and that their execution can be staged such that all metalanguage
combinators can be computed away completely at stage 1, leaving only well typed
L1-code for execution at stage 2. Furthermore, we report on experiments.

Composition synthesis [Reh13] is based on the idea of using inhabitation in combinatory

logic with intersection types [BCDC83] as a foundation for computing compositions from

a repository of components. We can regard a combinatory type judgement Γ ⊢ e : τ

as modeling the fact that combinatory expression e can be obtained by composition from

a repository Γ of components which are exposed as combinator symbols and whose in-

terfaces are exposed as combinator types enriched with intersection types that specify

semantic properties of components. The decision problem of inhabitation, often indicated

as Γ ⊢ ? : τ , is the question whether a combinatory expression e exists such that Γ ⊢ e : τ

(such an expression e is called an inhabitant of τ ). An algorithm (or semi-algorithm)

for solving the inhabitation problem searches for inhabitants and can be used to synthe-

size them. Under the propositions-as-types correspondence, inhabitation is the question

of provability in a Hilbert-style presentation of a propositional logic, where Γ represents a

propositional theory, τ represents a proposition to be proved, and e is a proof.

Following [WY05], a level of semantic types is introduced to specify component interfaces

and synthesis goals so as to direct synthesis by means of semantic concepts. Semantic

types are not necessarily checked against component implementations (this is regarded as

an orthogonal issue). In combinatory logic synthesis (CLS) [DMRU12, Reh13, DMR13]

semantic types are represented by intersection types [BCDC83]. In addition to being in-

herently component-oriented, it is a possible advantage of the type-based approach of

89



composition synthesis that types can be naturally associated with code at the API-level.

We think of intersection types as hosting a two-level type system, consisting of native

types and semantic types. Native types are types of the implementation language, whereas

semantic types are abstract, application-dependent conceptual structures, drawn, e.g., from

a taxonomy of semantic concepts.

In order to flexibilize CLS, staged composition synthesis (SCS) was proposed in [DMR14].

SCS introduces a metalanguage, L2, in which native implementation code, L1, (e.g. Java

or ML) can be manipulated (e.g., complex L1-code substitutions are possible). The meta-

language is essentially the λ�→

e
-calculus of Davies and Pfenning [DP01] which introduces

a modal type operator, �, to inject L1-types into the type-language of L2. Intuitively, a

type �τ can be understood to describe L1-code of L1-type τ or, informally speaking, �τ

means “code of L1-type τ”. A second repository containing composition components with

implementations in L2 is introduced. Then, synthesis automatically composes both L1-

and L2-components, resulting in more flexible and powerful forms of composition since

complex (and usually context-specific) L1-code-maniualations, including substitutions of

code into L1-templates, may be encapsulated in composition components. It is a nice con-

sequence of the operational semantic theory of λ�→

e
that computation can be staged. For

a composition e of type �τ , it is guaranteed that all L2-operations can be computed away

in a first composition time stage, leaving a well typed L1-program of type τ to be executed

in a following runtime stage.

Our framework has been implemented in an extension of the (CL)S (Combinatory Logic

Synthesizer) tool, and we report on the results of experiments using the tool for SCS.

References

[BCDC83] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A Filter Lambda Model and the
Completeness of Type Assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

[DMR13] Boris Düdder, Moritz Martens, and Jakob Rehof. Intersection Type Matching with
Subtyping. In Proceedings of TLCA’13, volume 7941 of LNCS. Springer, 2013.

[DMR14] Boris Düdder, Moritz Martens, and Jakob Rehof. Staged Composition Synthesis. In
Proceedings of ESOP’14, volume 8410 of LNCS, pages 67–86. Springer, 2014.

[DMRU12] Boris Düdder, Moritz Martens, Jakob Rehof, and Paweł Urzyczyn. Bounded Combina-
tory Logic. In Proceedings of CSL’12, volume 16 of LIPIcs, pages 243–258. Schloss
Dagstuhl, 2012.

[DP01] Rowan Davies and Frank Pfenning. A Modal Analysis of Staged Computation. Journal
of the ACM, 48(3):555–604, 2001.

[Reh13] Jakob Rehof. Towards Combinatory Logic Synthesis. In BEAT’13, 1st International
Workshop on Behavioural Types. ACM, January 22 2013.

[WY05] Joe B. Wells and Boris Yakobowski. Graph-Based Proof Counting and Enumeration
with Applications for Program Fragment Synthesis. In LOPSTR 2004, volume 3573 of
LNCS, pages 262–277. Springer, 2005.

90


