
Adapting eFinance Web Server Farms to Changing Market
Demands

Ronald Moore/Achim Müller/Ralf Müller/Klaus Temmen
IS Innovative Software AG

Sandweg 94, 60316 Frankfurt am Main
{ronald.moore | amueller | ralf.mueller | klaus.temmen}@isg.de

Abstract: The evolution of the eFinance Market presents new and changing re-
quirements on web server farm architecture. Web server farms built during the
boom years of the web were designed to provide service to a very large number of
users, where each request however placed relatively little load on the system.
Further, the requests displayed a large amount of statistical similarity, so that
caching mechanisms could be successfully applied. However, as professional eFi-
nance tools migrate to web-based ASP technology, and as different companies co-
operate to build these tools using the Web Services paradigm, these basic assump-
tions no longer hold: The number of users decreases, while the demands placed by
each user increases. Further, each user places highly specialized demands on the
application, decreasing the similarities between different requests. The success of
conventional caching techniques drops even further if the web server farm is now
called upon to provide XML-based Web Services instead of HTML web pages.

This paper analyzes these new requirements on the basis of a case study: We pre-
sent the design process behind the addition of an On The Fly Calculation Server to
IS Innovative Software's Web Server Farm architecture. This new server has been
developed to provide advanced financial (MPT) calculations to professional users.
The resulting design represents a form of intelligent memory, optimized to mini-
mize the movement of data and thus request latency. The stages in the develop-
ment of this new server, and the integration of this server into the existing web
server farm, are presented.

Keywords: Web Services, eFinance, high performance web applications, caching
mechanisms, web server farm architecture.

1 Introduction
Changing market conditions are leading to new requirements for eFinance web servers,
and the architecture of financial web server farms is changing to meet these require-
ments. As a case in point, this paper reviews the design of a new financial calculation
server, and shows how this design mirrors new developments in the eFinance market.
In a previous paper [CMM02], we have shown how the concept of active caching plays a
central role in the financial web sites developed, hosted and presented by the web server
farm of IS Innovative Software. This cluster has been developed to meet the demands of
financial web sites for low latency and high availability despite very high peak loads.
This paper shows how the migration of financial applications onto web-based, ASP (Ap-
plication Service Provider) platforms presents new challenges and requirements, and
how these challenges in turn influenced the design of a new calculation sever for ad-
vanced financial applications.

152



Further, just as the concept of cache memory was taken from traditional computer archi-
tecture and adapted to the field of web server farm architecture, the new extensions to
web server architecture are reminiscent of the computer architecture concept of intelli-
gent memory (IRAM) [Pa97], in which the distinction is dropped between data servers
and computation servers.

1.1 Changing Market Forces

Market forces are driving professional eFinance applications onto the web server plat-
form and into the ASP paradigm.
This has two sides: Web site providers are facing an increasingly competitive market for
conventional web sites, and thus must search for growth potential in up-scale, value-
added professional markets. At the same time, providers of professional applications are
drawn to the ASP platform, because its inherently networked nature allows for the quick
and cost-effective dissemination not only of rapidly changing data, but also of the appli-
cations that operate on that data.
Further, networked platforms offers companies new ways to cooperate when building
such distributed applications, with interfaces defined and implemented on the basis of
XML and the Web Services paradigm [Ce02].

1.2 Changing Challenges for Web Server Farms

Conventional financial web sites are called upon to provide web pages with a minimal
latency to very high numbers of users. Further, financial web sites are called upon to
provide dynamically changing, often personalized, information (most typically, but not
only, current prices). Conventional database systems cannot meet these requirements.
Fortunately, the similarities between the requests made by different users present ideal
conditions for cache memory techniques. Cache memory logic works only when statisti-
cal regularities exist in the memory usage: cache designers speak of temporal and spatial
locality [Mo02]. These techniques apply well to conventional websites, due to the strong
statistical properties of their usage, as long as advanced techniques are used to accom-
modate the demands for fast invalidation and updating of dynamically changing data.
Application-specific techniques can be used to capture statistical regularities unique to
different types of web traffic [CMM02].
When however conventional web server farms are extended to serve XML as a part of
ASP applications, new conditions prevail. The number of users is significantly lower,
while the statistical similarity of their demands on the application decreases, since each
user is working with data, and not just browsing it. This means that both the temporal lo-
cality displayed by one user’s requests, and particularly the temporal locality displayed
in the requests of groups of users, decreases. Further, XML interfaces are much less pre-
dictable than HTML interfaces. The constraints of good web page design do not apply.
This makes it harder to characterize the granularity of the data movement.

2 The Design of the “On The Fly Calculation” Server
This section illustrates the consequences of the changing market forces on the develop-
ment of IS Innovative Software’s new On The Fly Calculation (OTFCalc) Server.

153



2.1 The Architectural Context: Existing Financial Calculations Servers

Conventional web users are usually content with a fixed set of analytic figures, as long
as these figures are updated on a regular basis. As such, calculations for the web market
can be performed in an event-driven fashion, every time new price data arrives from the
data feeds, and not on demand. This led to the calculation architecture illustrated in the
Figure 1.
Financial data streams (e.g. prices) are parsed and interpreted by feed handlers and/or
importers. The data is first stored in a “Tick Server (TickServ)”, specialized to support
very fast retrieval, sorting and ranking of dynamically changing data. End-of-day histo-
ries are extracted and stored in a specialized “History Server (HistServ)”. Analytic fig-
ures are derived from these histories and added back to the tick server, where the web

server can obtain them upon request. The web server includes a variety of application-
specific cache memories designed to reduce the amount of requests actually sent to the
tick server. All of the hardware components are replicated to provide both fail-over secu-
rity, as well as parallel computation for increased performance. The architecture is, in
other words, highly scalable.
Since the set of all calculations provided is of a reasonable size, it is possible and effi-
cient to update all the financial figures as soon as new end-of-day prices are added to the
history Server. Much care is taken to invalidate out-dated calculations in the web serv-
ers’ caches [CMM02].

2.2 Functional Specification of the On The Fly Calculation Server

As part of a cooperation with a supplier of professional financial analysis applications
for the funds market, IS Innovative Software AG needed to adapt its web server farm ar-
chitecture (as described in [CMM02]) to allow professional users to perform highly vari-
able financial calculations on funds performance data. The new service needed to be able
to supply two forms of output: performance histories in arbitrary currencies, and calcu-
lation matrices.
Each row of a calculation matrix represents one fund’s history, and each column repre-
sents a different calculation. Thus, each element of the matrix contains the results of
applying one calculation to one fund’s history.
The calculations included both basic investment scenarios (e.g. savings plans, withdra-
wal plans) and MPT (Modern Portfolio Theory) [FGM02] calculations. Each calculation
(column) is specified by parameters such as currency, sample frequency, time range
(start and end dates) and choice of benchmark.

HistServ

Feed Handler
+ Importer

CalcServer

Web 
Server

End 
User

TickServ

Figure 1: The portion of the previous architecture responsible for financial calculations.
Arrows show dataflow (the flow of requests is not shown).

154



Cache 1

Cache 2

Cache 3

CalcCache

. . .

Web
Server
Core

A
ll R

A
M

 F
und M

em
ory

C
urrency C

onverter
Calc Module

“Front Desk”
Request Handler

(Server Framework)

F
eed H

andler+
Im

porter

The OTF Calc Server The Web Server

Figure 3: The Components of each Server.

The basic requirement for performance was that a matrix containing several hundred
rows (funds), and some dozen columns (calculations), must be returned to the user in
well under five seconds.

2.3 The Design of the OTFCalc Server

Since professional users need to be able to vary any and all of the parameters of each
calculation (e.g. currency, benchmark), a new server is required to produce results on the
fly. The space of all possible permutations of the parameters (and thus the number of fi-
gures which the architecture must be prepared to serve) is much too large to provide in
an event-driven manner.
The design of the new, extended architecture is illustrated in Figures 2 and 3.
The first design decision was to store the fund histories separately, and to store them all
in RAM. Neither conventional database servers or the existing HistServ would have
been fast enough, given the large number of histories involved in a single request.
Further, RAM is meanwhile so inexpensive, that the option to hold all the histories in
RAM, unthinkable only a few years ago, is now easily affordable.
The next design decision was to incorporate the currency conversion functionality di-
rectly into the server which stored the funds’ histories. This means that the currency ex-
change rate histories must be stored with the funds’ histories, but eliminates the need to

HistServ

Feed Handler
+ Importer

CalcServer

Web 
Server

End 
User

and/or
XML

TickServ

OTF
Calc 

Server

OTF Calc 
Cache

Figure 2: The Extended Architecture.
New portions are white, previously existing portions are in gray.

155



move these through the network. This represents the first step to a server architecture
similar to the concept of intelligent memory (IRAM) [Pa97]: Computation is seen as a
value-added feature of a data server, and not as a server in its own right.
Various experiments were performed to establish the relationship between data transfer
times and calculations times. All experiments demonstrated conclusively that the calcu-
lation times were completely negligible in comparison with the time required to move
the data between the servers. This observation had two implications: First, plans to pre-
calculate, in an event-driven fashion, the most often requested intermediate results were
abandoned. Second, it was decided to integrate even the calculation of the matrices into
the new history server. This resulting server design, which combines a specialized stora-
ge of the funds’ histories, currency conversion and all the calculations, was named the
On The Fly Calculation (OTFCalc) Server. This server can either be called upon to pro-
vide funds’ histories, converted to various currencies, or to provide calculation matrices
based on these histories (compare Figure 3).
It would have been possible to go even further and integrate a cache memory into the
OTFCalc Server, but it was decided instead to integrate such a memory into the web ser-
ver. This was done for several reasons: Most importantly, the only significant statistical
regularity to be expected exists between the different requests made over time by each
individual user. Since the web servers’ load balancer can usually map one user’s requests
onto the same physical web server, the web servers have a much better chance to disco-
ver and exploit this statistical regularity.
Another reason to put the Calc Cache in the Web Server is the synergy between two ne-
cessary forms of preprocessing: The arbitrary size and shape of the XML requests is un-
suitable for communication between the web server and the OTFCalc Server. Therefore,
the requests are dissected into blocks with a given (but configurable) maximum size.
This preprocessing step can be easily combined with the manipulations performed when
the Calc Cache recognizes that individual calculations are stored in the cache.  These
preprocessing steps continue the trend toward specialized, application-dependant cache
logic (cf. [CMM02]).

2.4 Preliminary Results and Plans

Both the OTFCalc Server and the Calc Cache component for the web server have been
implemented, and while they have not yet been tested under realistic loads, preliminary
tests have to date consistently demonstrated response times well under the required 5 se-
cond threshold, with matrices with over seven thousand rows. Further, one OTFCalc
server can (so far) easily hold all the histories for all available European funds so far.
Planned work includes testing different data distribution methods (which will become as
the number of funds in the system increases), and more advanced caching logic in the
Calc Cache, once we have sufficient experience with realistic loads to determine what
statistical regularities exist (if any).

3 Conclusion
This paper demonstrates the effects changing market conditions have had on the financi-
al web server farm architecture developed and employed by one commercial web service
provider. Market saturation in the web realm and continuing cost pressure in the financi-
al application market motivates the migration of professional applications onto web-

156



based ASP platforms, which in turn accelerates the adoption of XML-based interfaces
and the Web Services paradigm. These two developments change the functional requi-
rements placed on web server farms, leading to new, streamlined architectures.
Just as conventional web server farms adapted the concept of cache memories from tra-
ditional computer architecture, we are now approaching an architecture very similar to
the concept of intelligent memories (IRAM) [Pa97], in which processors and memories
are merged. Affordable RAM and ever increasing CPU performance in reasonably pri-
ced (PC-class) servers leads to the melting together of calculation and data storage func-
tionalities. Both the technological and the economic trends are thus leading to designs
where calculations represent value-added enrichments to highly specialized data servers.

References

[Ce02] Cerami, E.: Web Services Essentials. O’Reilly UK, 2002.

[FGM02] Fabozzi, F.; Gupta, F.; Markowitz, H.: The Legacy of Modern Portfolio Theory.
In:Journal of Investing, Fall 2002, p. 7-20.

[CMM02] Cotoaga, K.; Müller, A.; Müller, R.: Effiziente Distribution dynamischer Inhalte im
Web. In: Wirtschaftsinformatik 44  (2002) 3, p. 249-259.

[Mo02] Moore, R.: SDAARC – A Self Distributing Associative Architecture. Shaker Verlag,
2002.

[Pa97] Patterson, D. et al.: A Case for Intelligent RAM: IRAM. IEEE Micro, April 1997.

157


