Model-Based Analysis of Design Artefacts Applying an
Annotation Concept

Daniel Merschen*, Yves Duhr**, Thomas Ringler**, Bernd Hedenetz**, Stefan Kowalewski*
*Embedded Software Laboratory, RWTH Aachen University
Aachen, Germany
{merschen | kowalewski} @embedded.rwth-aachen.de

Group Research & Advanced Engineering, Daimler AG**
Boeblingen, Germany
{yves.duhr | thomas.ringler | bernd.hedenetz} @daimler.com

Abstract: In automotive software development, dependencies among process artefacts,
i. e. requirements, implementation and test cases, are often not obvious. This causes
time-intensive manual analysis efforts to incorporate changes during software evolu-
tion. Therefore, automated tool support is essential to establish an efficient change
management during the software life cycle.

This paper presents a model-based concept which integrates the artefacts themselves
as well as development-related meta information about them to establish both functional
and process-related artefact analyses. To this end, we represent them as models in the
Eclipse Modeling Framework and apply model transformations to support different
kinds of automated analyses.

1 Introduction

Within the automotive industry market trends like functional innovations and an increasing
number of car lines lead to a dynamic life cycle of software applications, e. g. the need
to incorporate new features or changes of requirements late in the development process.
Hence, a special software development approach is necessary which is better suitable to
handle such dynamics exploiting systematic reuse and variability concepts.

To tackle these challenges, Daimler’s Electrical and Electronics division for the body
and comfort domain has been following the model-based approach with Matlab/Simulink
[Matb] for several years [WDRO8]. As Figure 1 visualises the product line is first modelled
as a feature tree following the Feature-Oriented Design Analysis (FODA) [KCH™90].
This feature tree supports the engineer in an early stage by documenting the different
dependencies. Second, the artefacts, i. e. a system specification (requirements), a Simulink
model (implementation model) and a test specification, are built accordingly. However,
as described by [TDHI11] the current approach has to be extended in order to efficiently
manage the increasing complexity of future functions, especially to support software
evolution. One intuitive step towards this evolution support is already realised by hand-
written documentation which is added to the subsystems which implement special features

169

Variability Modelling Design Artefacts Documentation
System Specification

1. > B
¥ > . . Meta

> .)
21 | information on
3l > .‘ requirements

Implementation Model

Sid . " Meta
5 > 8 | nformatin on
/ - subsystems

‘Feature 21 ‘ ‘ Feature 2.2 ‘ |

,,,,,, , ; » Meta
depends on 2 ” . N .
21 > . information on|
L N test cases
3. > .

Figure 1: Workflow of the process described by Thomas et al. [TDH11]

in the Simulink model respectively the requirements or test cases (cf. right part of Figure 1).
Nevertheless, due to the complexity of the product line artefacts and the documentation
style (free text) maintenance and evolution are still time-consuming. This phenomenon is
well-known in literature. As [Som(7] points out the costs of maintenance and evolution of
long-lifetime software systems exceed the development costs by factor 3-4. According to
[MDO08] 50% of development costs are needed just to understand legacy code.

To our mind, it is therefore important to provide engineers with automated analyses to
manage software evolution. These analyses should first consider functional and structural
aspects of artefacts to handle the artefact complexity, e. g. to create views on a Simulink
model which visualise model elements depending on a given signal. Second, process-related
and variability-related issues have to be taken into account, e. g. to identify reasons for
changes of artefacts during life cycle. In [PMT*10] and [MPBK11] we focus on structural
and functional analyses of single and multiple artefacts, while this paper will describe a
concept to integrate process-related information into the different artefacts to widen the set
of possible analyses by process-related ones. To this end, we have elaborated a general
artefact integration concept as well as an annotation concept to capture meta information.
This concept was inspired by the model-based development of embedded on-board software
at Daimler AG and is explained in Section 2. That is why we mainly focus on the applied
tools (Matlab/Simulink [Matb] and IBM Rational DOORS [IC]) here. However, the concept
is held abstract enough to be generalisable for the use in other tools and application areas
as well which will be explained in Section 2.4. In Section 3 we discuss the benefits based
on a case study of experienced Daimler engineers. We describe related work in Section 4
before summarising the paper and giving an outlook on the next steps in Section 5.

170

Documentation Design Artefacts Interface Model Repository Management /

System Specification Analysis
1 N
2, o ate EMF-Moas) ;eq“'re”;e?ts Structural model
1. enerate -Model il epresentative i
‘__’V 22. > Transfer Annotations > Annotations analysis

3.

Implementation model Identify traces

i

Implementation
. g]_‘: > Generate EMF-Model / || »| Representative
Central An.notatlon > Transfer Annotations Armotations Analyse change
Repository requests
".x‘Test Specification Analyse
* ¥ Tosts Subsystem Histol

‘d 2 [/ Generate EMF-Model /
22 7\ Transfer Annotations

- Representative
Annotations

|
gl

3.

Figure 2: Conceptual overview to establish multi-artefact analyses consider also meta information

2 Approach

To tackle the challenges mentioned in Section 1 it is necessary to add automatically
analysable process-related meta information to the artefacts and to connect the different
tools (cf. [BFHT10]). We do this by following the concept description in Figure 2. To
integrate meta information we elaborated a concept based on a central annotation repository.
Section 2.1 will describe how this concept works. Subsequently, we integrate the different
artefacts into one model repository. This step is described by the middle three parts of
Figure 2 and will be explained in detail in Section 2.2. Based on integrated artefacts
including meta information different kinds of analyses are planned to be realised (right
part of Figure 2) one of which is outlined in Section 2.3. Finally, we will describe how the
presented concept can be generalised in Section 2.4

2.1 Documentation of Design Artefacts

In order to efficiently incorporate late changes and to support evolution we would like
to be able to analyse artefacts not only with respect to their structural and functional
construction but also consider meta information about the development process like changes
of subsystems due to change requests, bug reports or combinations of them. In model-based
development with Matlab/Simulink such information is often specified as free text within
special version information blocks from TargetLink [dSp] libraries. Hence, these blocks
do not implement functionality but just answer the purpose of documentation. Figure 3
exemplifies the content of a version information block. Currently, diverse meta information
is specified that way within these blocks, e. g. time stamp and author of the meta information
itself, the version, the information is relevant for, the ID of a change request that initiated
the change and the production line(s) the subsystem is relevant for.

171

" ‘-_"_' 1 ." s DT . ral -.'I;Il‘lll.ﬂ

* R e b retiem & bl |

Figure 3: A screenshot of a version information block for the documentation of subsystems

One approach to integrate this free text information into analyses would be to define a
unique syntax for the free text so that a parser could collect the relevant information. In
earlier work [MPBK11] we present an analysis which follows this approach. However, as,
in practice, every user uses his own syntax parsing this text is error-prone. A further problem
of using version information blocks is that the information can only be retrieved manually
by stepping into the subsystems recursively. There is currently no way to receive an
overview over subsystems and their documentation or realisation status, which complicates,
for example, an estimation of the (remaining) effort to incorporate a change request.
Furthermore, artefact elements that are related to the same functionality are likely to be
annotated with similar text. The different syntax will complicate the identification of these
relationships. Uniquely defined annotations, however, could facilitate it and hence, also
support the establishment of traceability. In the following section we will define what
is meant by an annotation in our context and explain which requirements an annotation
concept has to meet to be useful and applicable in industrial practice. In Section 2.1.2 we
will outline how we realised these requirements.

2.1.1 Requirements on the Annotation Concept

To address these challenges we suggest annotations on artefacts. To our mind, an annotation
concept should (1) facilitate automated analyses, (2) ensure uniqueness of annotations, (3)
allow artefact-comprehensive annotating and (4) allow for an overview over all annotations.

To facilitate automated analyses it is important to ensure that there is a unique syntax
for each semantics and, hence, to limit free text specification as much as possible. This
requirement cannot be covered by the current free text annotation. Hence, we provide a type
for each annotation such that an annotation can be defined as a tuple <TYPE, VALUE>.

In order to ensure that annotation types are unique and artefact-comprehensive our concept
provides a central management, i.e. there is a central repository of all available types
together with a description about their meaning (cf. left part of Figure 2). Each tool should
then connect to this central repository to retrieve these types such that the user can only
select the desired type and then specify the desired annotation value (cf. second part of
Figure 2).

172

Extract annotations Simulink Model

Annotation Document Implementation
(DSL) Representative

Create Model

Implementation
Representative

Annotation Model

Annotations

Figure 4: Import of an annotated Simulink model into our framework

2.1.2 Realisation

Up to now, we have focussed on the annotation of Simulink models. Each block in a
Simulink model contains a parameter called UserData, which we use to annotate it with
the help of the sef_param command of the Matlab API [Mata]. To prevent the user from
arbitrarily defining annotation types himself which would limit automatising analyses the
annotation is performed via a Matlab script which reads out the available types from a
database (cf. left part of Figure 2) such that the user can select one. Subsequently, the
user is prompted to specify the annotation value. This workflow is repeated until the user
finishes annotating. Finally, the script writes the annotation to the Simulink model with the
above mentioned set_param method.

2.2 Artefact Integration

In order to establish analyses including multiple artefacts it is necessary to connect the
different tools, i. e. to join the artefacts in one common repository. With this approach we
can avoid the problem of tool-dependent model analyses. The corresponding process is
visualised by the middle three parts of Figure 2. We currently import Simulink models and a
csv-export of the requirements in IBM Rational DOORS with Xtext [EFd], a framework to
create domain-specific languages. The resulting models are models of the Eclipse Modeling
Framework (EMF) [EFa], which we call representatives of the original artefacts and which
are stored in the model repository.

Besides the artefacts themselves, the annotations, which were added to them as described in
Section 2.1, have to be transferred to the corresponding representative in the model reposi-
tory. Otherwise the management component described later on could not consider them
for analyses. Up to now, we realised this step for Simulink models. As Matlab/Simulink
does not store them in clear text within the file we follow the process in Figure 4 to transfer
the annotations from Matlab/Simulink to our model repository. The grey parts describe
activities which take place within Matlab/Simulink while the black ones are performed
within our framework. First of all, the annotations are extracted out of the Simulink model
with Matlab methods, i. e. with a Matlab script which reads all available annotations and
writes them into a text file following a domain-specific language (DSL) (cf. Listing 1).

173

_ =

— O 000NN R WN =

Implementation
Representative

Generate Script

(Xpand) Export (Xpand)

Annotations

Matlab Script Annotate Simulink Model

Figure 5: Export of an annotated representative implementation model of our framework to Mat-
lab/Simulink

AnnotationModel AnnotModel {
annotations {

Annotation 0 {
path ”ADIJ_tlI06/ADJ/ Subsystem/Subsystem/Subsystem/ADJ_Function/SoCProcessing”
type ”VERSION”
value ”1.0”
author ”JT”
timestamp ”2010/04/15 08:09:08”

3

[...]

Listing 1: An excerpt of an annotation document exported via a Matlab script

For each annotation the script captures the author, the time stamp, type and value as well as
the path to the annotated block. The path describes the navigation through the Simulink
model via the subsystems to the block starting at the root system (analogous to a path to a
file in a file system). It is necessary for the further process to find the corresponding block
in the representative implementation model within the model repository of the framework.

Next, the file is parsed by an Xtext parser leading to an EMF-based annotation model,
which is stored within the model repository and directly linked to the implementation
representative by a model transformation (cf. Figure 2).

Results of an artefact analysis might also be stored as annotations within the representatives.
For instance, one could be interested in all subsystems of a Simulink model that were
affected by a change request. In this case one could append a suitable annotation to the
respective subsystems of the representative. In such cases it also has to be possible to
transfer such annotations from the model repository to the Simulink model. Figure 5
describes the steps to be followed for that purpose.

To this end, we apply XPand [EFc] to (1) export the implementation representative to
Matlab/Simulink and (2) to generate an annotation script for it from the annotation model.
Subsequently, we run the generated script to transfer the annotations to the exported
Simulink model.

174

- s 4 2010/04/15 4 2010/04/20
—

Block:Ruhestromschalter
Date: 2010/04/16 08:25:14
[Author]T
|Release:l 0,
Comment:n/a
Version:1.0,
LOP:n/a
(CR:n/a
Line:993,

Figure 6: Resulting table of a history analysis visualised in a graphical editor of the GMP

2.3 Artefact Management and Analysis

In the right part of Figure 2 we mention some examples for analyses which base on the
model repository. For details and examples about structural model analyses we refer the
reader to previous work [MPBK11, PMT10]. To estimate the potential of the presented
annotation concept for automated, process-related model analysis we focus here on the
analysis of the subsystem history which generates a tabular overview over subsystems of
a Simulink model and the dates of their changes in a graphical editor of the Graphical
Modelling Project (GMP) [EFb]. Furthermore, for each date of change detailed information
about the change is collected and displayed to the user (cf. Figure 6). Previously, we
retrieved this information from the version information blocks mentioned in Section 2.1
by parsing the free text with an Xtext parser. However, when we applied the concept on
real productive models this approach turned out not to be scalable enough for industrial
practice due to too different kinds of syntax used for the free text. Now we have applied
the described annotation concept, i.e. we added the information of the version information
blocks with annotations on the affected subsystems. As expected, the model transformation
now works well such that we can assume the concept to be a benefit for automated analysis
and even for linking artefacts based on annotations.

2.4 Generalisation

Up to now, we focussed primarily on the integration of annotations into the implementation
model exemplified by Matlab/Simulink. However, this approach is generally not restricted
to Matlab/Simulink although some modification will be necessary to transfer the concept
on other tools as well.

With respect to the implementation model we assume that the basic functionality of other
tools is comparable to Matlab/Simulink and that models can be transformed into Simulink
models with equivalent semantics. This assumption, of course, would have to be evaluated
thoroughly before the approach is transformed to a different tool platform.

Concerning requirements and test cases the situation is different. As we can only import
csv files into the model repository the syntax is fixed while the semantics is not. Hence,

175

the import will not have to be adapted if the applied tool can export the requirements as a
csv file. However, as the semantics of the resulting requirements respectively test model
is unknown, the model transformations have to be adapted. This step is supposed to be
time-intensive.

Moreover, we have to consider how the central repository can be accessed by the applied
tools. Up to now, we have established the repository access in Matlab/Simulink. However,
as the repository is realised by a relational database the available annotation types can be
retrieved via usual SQL queries. Hence, the concept can be integrated into each tool which
is able to communicate with a relational database.

Due to the abstractness of the concept it also becomes applicable to other application areas,
e. g. to support software project planning. To this end, it has to be further extended to
capture more artefacts in the model repository, e. g. whole descriptions of change request,
bug reports and feature models which have to be managed by project leaders.

3 Practical Experience

In order to estimate the benefits of the presented concept for the model-based development
at Daimler the concept was evaluated by three Daimler engineers with 6, 10 and 15 years
of experience in software development of embedded systems (max. 10 years experience
in model-based development). To do so, they focussed on the implementation model in
Matlab/Simulink of a real-world embedded software product line. The application of the
concept on other artefacts like requirements and test cases has not been evaluated yet. The
evaluation criteria were (1) error-proneness , (2) benefits for automatising single artefact as
well as multi-artefact analyses including meta information, (3) generalisability, (4) barriers
to overcome before going active.

Error-proneness One of the targets of the presented annotation concept is to reduce the
use of free text in order to prevent errors during automated model analysis. The concept can
be expected to meet this requirement. The assumption is based on the analysis presented in
Section 2.3 which was performed on a Simulink model with 1,000 blocks and a subsystem
hierarchy depth of 8. Applying the former concept which parsed the free text of the version
information blocks lead to frequent parsing errors. These are caused by the fact that many
engineers work at the same Simulink model and everyone uses his own syntax to specify
meta information. The same model was now successfully annotated using the presented
annotation concept and analysed with an adapted model transformation which should be
applicable to every implementation model representative.

Expected benefits for model analyses The concept’s potential to support automated
model analyses with respect to meta information was estimated as high. As the annotation
syntax is unique, annotated meta information becomes automatically comparable which
is regarded as an essential break-through for automatising model analyses. In order to
establish multi-artefact analyses the central management of annotations is important as

176

different tools can access the same database leading to the same annotation types in different
artefacts. That way artefacts can be linked based on annotated meta information. However,
up to now just annotation fypes are unique as they are stored centrally and offered to the
user for selection. Annotation values are not yet kept centrally. This limits comparisons
among annotations again and should be addressed in the next steps.

Generalisability The concept is held abstract enough to be applicable to other tool chains
as well. Model analyses do not operate on the original artefacts but on their representatives
in the model repository. Hence, the “only” tool-specific part of the concept is the interface
which will have to be adapted to integrate other tools. However, changing the interface can
be expected to be more reasonable than changing a tool as the latter would mean lots of
costs for migration and teaching personal. That is why an interface change can supposed to
pay off.

The extensibility for further artefacts was regarded as a further advantage of the presented
concept. Integrating change requests, for instance, would also make the concept applicable
to whole process management tools supporting estimating efforts.

Moreover, new annotation types can be added centrally and need not be made available to
the different tools individually.

Barriers for concept introduction As almost every change of process the introduction
of the presented concept cannot be established without preparatory work. All currently
available free text information has to be added to the artefacts first meaning lots of hours of
work. However, to the engineers’ mind, the concept will pay off due to decreasing efforts
in model analysis during evolution.

For real-world scenarios annotations should be made more expressive. For instance,
annotations might be related to each other or even annotate other annotations. To this end,
the data modelling and model transformations should be adapted accordingly. That way,
the scope of model analyses could be widened even more.

4 Related Work

In [PMT™10] we elaborated structural and functional analyses to generate views on
Simulink models to support the engineer with modelling tasks, e.g. to analyse parts
of a Simulink model which depend on a given signal. We extended this work in [MPBK11]
where we also considered analyses concerning inter-artefact relationships and made a first
attempt to analyse meta information. However, as the meta information was specified using
free text the concept was not sufficiently scalable onto productive models due to the amount
of different syntax used to express the same semantics.

[TDH11] focuses on challenges concerning the introduction of a product line approach in
the context of AUTOSAR-based [AUT] development of applications for in-vehicle systems.
Especially, it is pointed out that current approaches to introduce a product line and related

177

tool chains do not sufficiently support the product line life cycle. To do so, a seamless
variant management integrating different artefacts is necessary. In this context annotations
as presented in this paper can be helpful to identify relationships and, hence, to support the
migration.

[BFH™10] elaborates on the general problem of tool isolation in practice. They explain
which challenges evolve from tool isolation in the context of traceability and consistency
of artefacts. As a cause for inconsistency they identify that current interaction among
tools is not deep enough. That way possibilities of reuse are too limited. They consider
a comprehensive modelling theory, an integrated architectural model and an integrated
model engineering environment to be fundamental prerequisites to establish a seamless
model-based development process. Our approach of artefact integration addresses the
isolation problem while the annotation concept intends to make the interaction deeper.

[BDT10] elaborates on model transformations concerning safety-related embedded systems.
They also perform analysis of embedded systems with model transformation. However,
their objective is to automate translations from architecture description in the automotive
domain into a safety analysis tool called HiP-HOPS.

The framework ToolNet [ADS02] was developed by DaimlerChrysler using MOFLON
[TD] focusing on the creation, the management and consistency checks of traceability
links between different tools. ToolNet assists the developer in the manual construction
of traceability links. In contrast to that, our approach will support the developer by
automatically creating the traceability links through the annotation information.

[ZMV 03] associates objects of a model with the corresponding objects of the model in
the following design step. They use annotations only for free text documentation. This
documentation could be accessed by keyword search but is not intended for automated
analysis.

[SVSZO01] elaborates on the problem of losing knowledge during the development process.
They developed a tool called Clockwork Enrich Tool to annotate individual blocks of a
Simulink model with free text. In [MZV*03] they also introduce formalisations. However,
they just support few formalised relations among artefacts. Our approach provides artefacts
with more formalised knowledge to automatically analyse these relations.

S Summary

The presented work intends to support the model-based development of an embedded
software product line. Two of the main challenges in this context are to overcome the barrier
of tool isolation and to allow for automated analyses of artefacts and their interrelationships
considering both functional aspects and process-related meta information. To our mind, the
concept which is best suitable to tackle these challenges is to integrate the different artefacts
into one tool-independent model repository which offers interfaces to the current tools in
use. To capture meta information about the development process on the different artefacts
we presented an annotation concept. By defining a syntax for annotations and a central
artefact-independent repository for annotations the concept allows for automatising artefact

178

analyses with respect to development-related and evolution-related issues. Moreover, the
concept is to a large extent constructed tool-independent as both artefacts to analyse and
the related annotations are kept in an external repository.

To analyse the information specified by these annotations we can export them from Mat-
lab/Simulink into our external framework and link them with representatives of the Simulink
model. We have exemplified one analysis of meta information with the help of annotations
in Section 2.3.

Up to now, we are able to import Simulink models and requirements into the external
framework. Furthermore, we implemented the annotation concept for Simulink models.
However, in order to establish traceability using the annotation concept we have to integrate
annotations into the other artefacts as well. Last but not least the annotation concept is
currently just a prototype. In order to put the concept into practice it has to be extended
and restructured to make annotations more expressive. For instance, annotations are
currently appended to blocks in a linear, i.e. flattened, manner. That way information
about relationships among themselves cannot be captured and hence, we loose information
compared to the free text approach where information can be grouped textually. This
requires a deeper analysis of the kinds of information to be annotated and a different way
to specify them in a user-friendly manner. After restructuring annotations a graphical user
interface will be needed to support the engineers during evolution of the product line.

Acknowledgement

This work was funded, in part, by the Excellence Initiative of the German federal and
state governments as well as Daimler AG. Moreover, we would like to thank Christian
Dziobek, Thorsten Stecker, Uwe Spieth and the anonymous reviewers for useful inputs and
constructive feedback about the presented concepts.

References

[ADS02] F. Altheide, H. Dorr, and A. Schiirr. Requirements to a Framework for Sustainable
Integration of System Development Tools. In EuSEC 02, pages 53-57, 2002.

[AUT] AUTOSAR. AUTOSAR AUTomotive Open System ARchitecture. http://www.
autosar.org/.

[BDT10] M. Biehl, C. Deliu, and M. Torngren. Integrating safety analysis into the model-based
development toolchain of automotive embedded systems. In LCTES ’10, pages 125-132,
2010.

[BFH'10] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D. Ratiu. Seamless Model-
Based Development: From Isolated Tools to Integrated Model Engineering Environments.
Proceedings of the IEEE, 98(4):526 —545, April 2010.

[dSp] dSpace. Target Link. http://www.dspace.com/en/ltd/home/products/
sw/pcgs/targetli.cfm.

179

[EFa]

[EFb]

[EFc]

[EFd]
[C]

[KCH190]

[Mata]

[Matb]

[MDO08]

[MPBK11]

[MZV 03]

[PMT*10]

[Som07]

[SVSZ01]

[TD]

[TDH11]

[WDROS]

[ZMV103]

Eclipse-Foundation. EMF - Eclipse Modeling Framework. http://eclipse.org/
modeling/emf/.

Eclipse-Foundation. GMP - Graphical Modelling Project. http://www.eclipse.
org/modeling/gmp/.

Eclipse-Foundation. Xpand. http://www.eclipse.org/modeling/m2t/
?project=xpand.

Eclipse-Foundation. Xtext. http://www.eclipse.org/Xtext/.

IBM-Corporation. IBM Rational DOORS. http://www—01.ibm.com/
software/awdtools/doors/.

K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature Oriented Domain
Analysis (FODA) Feasibility Study. SEI Technical Report CMU/SEI-90-TR-21, ADA
235785, Software Engineering Institute, 1990.

The MathWorks, Inc. Function Reference (MATLAB). http://www.mathworks.
de/help/techdoc/ref/f16-6011.html.

The MathWorks, Inc. Simulink — Simulation and Model-Based Design. http://www.
mathworks.de/products/simulink.

T. Mens and S. Demeyer. Software evolution. Springer, 2008.

D. Merschen, A. Polzer, G. Botterweck, and S. Kowalewski. Experiences of Applying
Model-based Analysis to Support the Development of Automotive Software Product
Lines. In VaMoS ’11, pages 141-150, 2011.

P. Mulholland, Z. Zdrahal, M. Valasek, P. Sainter, M. Koss, and L. Trejtnar. Supporting
the sharing and reuse of modelling and simulation design knowledge. In ICE 2003, 2003.

A. Polzer, D. Merschen, J. Thomas, B. Hedenetz, G. Botterweck, and S. Kowalewski.
View-Supported Rollout and Evolution of Model-Based ECU Applications. In MoMPES
’10, pages 3744, 2010.

I. Sommerville. Software engineering. International computer science series. Addison-
Wesley, 2007.

P. Steinbauer, M. Valasek, Z. Sika, and Z. Zdrahal. Knowledge supported design and
reuse of simulation models. In MATLAB 2001, pages 399—406, 2001.

TU-Darmstadt. MOFLON. http://www.moflon.org/.

J. Thomas, C. Dziobek, and B. Hedenetz. Variability management in the AUTOSAR-
based development of applications for in-vehicle systems. In VaMoS 11, pages 137-140,
2011.

F. Wohlgemuth, C. Dziobek, and T. Ringler. Erfahrungen bei der Einfiihrung der
modellbasierten AUTOSAR-Funktionsentwicklung. In MBEFF ’08, pages 1 — 15, 2008.

Z. Zdrahal, P. Mulholland, M. Valasek, P. Sainter, M. Koss, and L. Trejtnar. A Toolkit
and Methodology to Support the Collaborative Development and Reuse of Engineering
Models. In DEXA 2003, pages 856-865, 2003.

180

