H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 245

Policy-based Authentication and Authorization based on the
Layered Privacy Language

Sebastian Wilhelm! Armin Gerl?

Abstract: In 2018 the General Data Protection Regulation (GDPR) has been enforced providing
a new legal framework with rules and regulations for processing personal data. The requirement
for distinguishing between purposes has been introduced, leading to the necessity of adapting
existing authentication and authorization processes. We introduce a detailed authentication and
authorization extension, which is able to verify requests on personal data based on the Layered Privacy
Language (LPL). This extension is evaluated in the form of a benchmark, utilizing the Policy-based
De-identification, to demonstrating its efficiency and suitability for data-warehouses.

Keywords: Access Control, GDPR, Privacy, Privacy Language

1 Introduction

The General Data Protection Regulation (GDPR) has been enforced in Europe since May
25th 2018 constituting Privacy by Design and Privacy by Default for all technical systems
[Col6, Art. 25]. Hereby, processing of personal data, which also includes storage of personal
data in databases and data-warehouses, requires either a legal basis or consent [Co16, Art.
6]. Furthermore, several conditions for consent have to be fulfilled, including the necessity
of the Controller demonstrating that the Data Subject consented. Consent has to be given
freely, or consent has to be differentiated according to the purposes of processing [Co16,
Art. 7, Recital 32]. Therefore, common authentication and authorization processes have to
be adapted and extended to allow a purpose-based processing of personal data to comply
with the GDPR. The Layered Privacy Language (LPL) in combination with its overarching
privacy framework intends to comply with the requirements of the GDPR to enforce privacy
policies ’from consent to processing’ [Ge18b].

The focus of this work lies in the detailing of the extension of authentication and authorization
by introducing purpose- and data-based authorization based on LPL as well as its evaluation.
The evaluation considers the scalability of this extension utilizing a benchmark.

! Deggendorf Institute of Technology, Technology Campus Grafenau, HauptstraBe 3, D-94481 Grafenau sebastian.
wilhelm @th-deg.de

2 University of Passau, Chair of Distributed Information Systems, Innstrale 41, D-94032 Passau, armin.gerl @uni-
passau.de

@@®®@ doi:10.18420/btw2019-ws-25

246 Sebastian Wilhelm, Armin Gerl

In the following, we will give an introduction of relevant elements of LPL in section 2.
Section 3 details the authentication and authorization processes of LPL introducing purpose-
and data-based authorization, which will be evaluated in section 4. Related work is presented
in section 5. Lastly, the work is concluded and future work is outlined in section 6.

2 Layered Privacy Language (LPL)

The Layered Privacy Language (LPL) is a domain specific language, designed to model
legal privacy policies [Gel8b]. In the following, we will detail only the relevant elements
for the scope of this paper. We also want to point out, that we will not consider the Ul
Extension [Gel8a] or Art. 12-14 GDPR Extension [GP18].

The root element of LPL is the LayeredPrivacyPolicy-element [pp, which has a set of
Purpose-elements p, a DataSource-element ds, as well as several attributes which are not
relevant for the scope of this work. Hereby, the DataSource-element denotes either the Data
Subject or another legal entity (e.g. a Controller) providing the data. A Purpose-element
further describes a set of DataRecipient-elements dr as well as a set of Data-elements d,
further elements and attributes are omitted for the sake of this work.

Based on LPL an overarching privacy framework is developed, which is intended to provide
both a user interface to inform the user on the privacy policy as well as the enforcement of
the policy. In general, the life-cycle of LPL consists of six steps. It starts with the Creation
step, in which the responsible data protection officer creates the LPL privacy policy. This
policy is then presented to the Data Subject during the Negotiation step, in which the
Data Subject can personalize it and eventually decides to accept or give consent to the
personalized privacy policy or not. If the privacy policy is accepted or consented to, then
the privacy policy will be validated and information about the Data Subject and its personal
data will be added during the Pre-Processing before it is stored along with the regular data
during Storage. During the Transfer step, data may be transferred to third parties under a
negotiated policy, to which then the original privacy policy will be added. Lastly, the stored
data will be processed during the Usage step, which will be the main focus in this work.

Hereby, the Policy-based De-identification process will be applied on each request for data
processing, whereas data will be de-identified as necessary, when the requesting entity is
authenticated and authorized to process the data for the specified purposes. The processes
for authentication and authorization are the focus of this work and will be detailed in the
following in the context of the Policy-based De-identification.

3 Policy-based De-Identification

A request on the Policy-based De-identification generally takes the form of the following
tuple:

—_—

request = (userldentifier, credential, 13: 13, DS)

Policy-based Authentication and Authorization 247

Where userldentifier is the unique identifier of the requesting user (e.g. username), credential
the credential of the user for authentication (e.g. password), P the set of all requested
Purposes, D the set of all requested Data and DS the set of all requested DataSources.

LPL now defines four steps for this process of inspecting which Data the Data Recipient is
allowed to request:

1. Entity-Authentication. Verify the authenticity of the requesting entity.

2. Purpose-Authorization. Get all Child-Purposes % of the requested Purposes
Py equestea and consider which Purposes are relevant.

3. Entity-Authorization. Verify if the requesting entity (Data Recipient) is authorized
to request the Purposes Prequested (OF Penita).

4. Data-Authorization. Verify whether it is allowed to request the requested Data D of
the requested Data Sources DS with the authorized Purposes Pyyuihorized-

The result of the de-identification process can be described as follows:

resultset = (@); SD = (dataSource, EF); DP = (data, Ife;,)

Where dataSource is a DataSource-element, data a requested and authorized Data-element,
and Ife;l, is the set of all relevant Purposes for a specific Data-element for a specific Data
Source-element which are authorized. DP maps all relevant Purposes to a Data-element
and SD maps this Data-Purpose Maps to a specific Data Source-element. The four steps of
the Policy-based De-identification will be detailed in the following.

3.1 Entity-Authentication

The Entity-Authentication process has the task of verifying the identity of a Data Recipient.
It will be inspected if the requesting entity is known3. Then the entity authentication
will be conducted, based on the configured authentication method. A request on the
Entity-Authentication has generally the form of the following tuple:

request = (userldentifier, credential)

The module verifies if the handed userldentifier and the credential belongs together. Some
different authentication methods are possible (e.g. hashed passwords or OAuth). The result
of Entity-Authentication is the authenticated DataRecipient-element dr ;.

3 Basically, an entity is stored in the data-storage (e.g. database). But there can be some special cases when entities
are known but not stored in the data-storage (e.g. for some API-keys)

248 Sebastian Wilhelm, Armin Gerl

3.2 Purpose-Authorization

The Purpose-Authorization process has the task of gathering all authorized Purposes

for a specific request. Each Purpose p can have Child-Purposes P/chiﬁ. Contrary to the
original definition in [Gel8b], it will be allowed that a Child-Purpose inherits from two (or
more) Parent-Purposes. This change in definition should provide the framework with more
flexibility. It is important, that no cycles in the definition of the Purposes exists.

A Purpose p is relevant for a DataSource-element ds if it (or one of its Parent-Purposes) is
part of the privacy policy of the Data Source. If a Purpose is mentioned in at least one of
the requested DataSource-elements DS, it is relevant for the current request. A request on
Purpose-Authorization has generally the form of the following tuple:

— —
request = (Prequested, DSrequested)

Where Prgz,;ed is the set of all requested Purpose-elements and DS;]u\ested is the set
of all requested DataSource-elements. The module initially receives all inherited child

Purpose-elements P_j;;4 of the requested Purpose-elements Pregyesteq and then maps to
each of the inherited child Purpose-elements P.j;;4 all DataSource-elements for which this

specific Purpose-element is relevant. Finally, all elements from %, which do not have
mapped any DataSource-elements, will be removed. The result of the Purpose-Authorization
can be described as follows:

resultset = (FB); PD = (p, E)

Where p is the Purpose-element and E is the set of DataSource-elements for which the
corresponding Purpose-element is relevant.

3.3 Entity-Authorization

The Entity-Authorization process verifies whether a DataRecipient dr is authorized for
requesting a set of Purposes P. Each Entity e can have Child-Entities E.pijq. S0, the Entity e

can inherit the rights for requesting Purposes from its Child-Entities E.pi1q4. It is important,
that no cycles in the definition of the Entities exists.

A DataRecipient dr is allowed to request a specific Purpose p if the DataRecipient dr or

at least one of its children D@d is authorized for using the Purpose p. A request on
Entity-Authorization has generally the form of the following tuple:

—_— —_—
request = (dr, Prejevant Prequested)

Policy-based Authentication and Authorization 249

Where dr is the DataRecipient, Py¢jevan: i the set of all relevant Purposes and Preguestea®
is the set of all requested Purposes. The result of Entity-Authorization is a set of all relevant
Purposes for which the Data Recipient is authorized.

3.4 Data-Authorization

Data-Authorization verifies whether it is allowed to request the Data D of the DataSource-
elements DS with the authorized Purposes Fa; For each Purpose p it is defined which
Data elements D are allowed to be requested for the Purpose p and for each Data Source ds
Purposes are defined to be used. The result of Purpose-Authorization has already mapped
each requested DataSource-element DS to its relevant Purposes. The Data-Authorization
now has to reorder the map and get for each requested DataSource ds and each requested
Data element d a set of possible Purposes. A request on Data-Authorization has generally

the form of the following tuple:
request = (5, l,)\S, E:m)

Where D is the set of all requested Data, DS is the set of all requested DataSources and
Pam ist the set of all authorized Purposes. Basically, the module reorder the data D DS
and P, so that they are in the form of the resultset. Some different configurations of
Data-Authorization are possible (e.g. return only data which are permitted for all requested
Data Source elements). The result of the Data-Authorization can be described as follows:

resultset = (SDP); SDP = (ds,DP); DP = (d, P)

Where p is the Purpose-element, ds the DataSource-element, d the Data-element and E the
set of entities for which the corresponding Purpose-element is relevant.

4 Benchmark-Evaluation

We implemented the steps Entity-Authentication, Purpose-Authorization, Entity-
Authorization and Data-Authorization on the basis of section 3 in JAVA and verified
the functionality with unit tests, to measure the execution times of the individual steps
depending on the input variables (e.g. number of purposes) to determine the efficiency of the
Policy-based De-identification. It is not the goal to be able to calculate the detailed execution
times of specific requests on a dataset with specific parameters rather it is important for
using the Layered Privacy Language on data-warehouses to ensure that the concept is
scaleable. In this section, execution times are analyzed, time intensive processes and method
are to be found and if necessary and possible, improved or possible improvements found.

4 Preguestea Will be needed for a specific system configuration where will be considered if the permission on

at least on of the requested Purposes Pyequestea iS missing.

250 Sebastian Wilhelm, Armin Gerl

The execution time of a request basically depends on the system-configuration (e.g. type of
entity authentication), the amount and dependencies of the data in the data-storage (e.g.
number of possible Data Subjects) and the amount of the requested Data Sources, Data and
Purposes. The goal is now to measure and compare the execution times of the individual
steps while varying the individual parameters. For this purpose, it is necessary to implement
a Benchmark Test Suite which tests all possible system configurations by entering the
parameters for the data store and the requested data and then saves the individual execution
times. For this the Mockito framework is used, to mock the interface to the persistence layer.
Specifically, we determine the parameters in 7ab. 1.

PurposeAmount: Amount of different Purposes, which are predetermined.
PurposeBranchning: Degree of branching of the Purposes with each other.
DataSourceNumber: Amount of different entities to which Data are stored.
PurposePerLpp: Amount of Purposes for which a single entity has consented to.
DataNumber: Value determining the amount of Data elements.
DataPerPurpose: Value determining the amount of Data elements which can be

requested with a single, specific Purpose.
DataRecipientAmount: Amount of entities which are authorized to request data.

RecipientBranching: Degree of branching of the Data Recipients.

PurposePerRecipient: Amount of Purposes for which a single Data Recipient is authorized.
RequestedPurposes: Amount of requested Purposes.

RequestedData: Amount of different requested Data elements.

RequestedDataSource: Amount of requested Data Sources.

Tab. 1: Configuration parameters for benchmark evaluation.

The Benchmark Test Suite first mocks the complete data store’ of the system depending
on the configuration parameters. From this mocked objects, data (Purposes, Data, Data
Sources) are determined, again depending on the configuration parameters, which should be
used for a request to the system. This request then will be executed for every possible system
configuration, measuring how much time each step will take. Finally, all measurements are
stored in a separate, external database. All tests were executed on a MacBook Pro (13 inch,
Mid 2012) with the operating system macOS High Sierra (10.13.3), a 2,5 GHz Intel Core i5
processor and /6 GB 1600 MHz DDR3 random access memory.

The measurements were analyzed by comparing the change of the execution times by
varying one single configuration parameter at a time. 7ab. 2 shows an example of such
values. With this (and further) measurements it was possible to approximate algorithms to
determine a dependency on the varied configuration parameter.

It can be observed that Entity-Authentication is affected by DataRecipientAmount, Purpose-
Authorization is affected by PurposeAmount, DataSourceNumber, PurposePerLPP, Request-
edPurposes and RequestedDataSource, Entity-Authorization is affected by PurposeAmount,
DataSourceNumber, PurposePerLPP and DataRecipientAmount, Data-Authorization is af-

5 The persistence-layer of the system, holing the relevant user and meta data for the Layered Privacy Language.

Policy-based Authentication and Authorization 251

RequestedDataSource 1 100 250 500 1000
Entity Authentication 0.38 0.38 0.5 0.41 0.37
Purpose Authorization 110.76 251.21 494.89 878.67 1675.47
Entity Authorization 1,59 1.84 1.82 1.89 1.88
Data Authorization 0.77 0.72 0.85 0.73 0.68
Total 113.6 254.25 498.16 881.84 1678.51

Tab. 2: Measured execution time in ms of the individual steps on varying the RequestedDataSource.

Entity- Purpose- Entity- Data-
Authentication | Authorization | Authorization | Authorization
PurposeAmount v v
PurposeBranching
DataSourceNumber v v
PurposePerLpp v v
DataNumber v
DataPerPurpose v
DataRecipientAmount v v
RecipientBranching
RequestedPurposes v v
RequestedData v
RequestedDataSource v

Tab. 3: Relevance of the individual benchmark test parameters to the different steps.

252 Sebastian Wilhelm, Armin Gerl

fected by DataNumber, DataPerPurpose, RequestedPurposes and RequestedData (seeTab.
3). In summary, it could be observed that each of the benchmark parameters has at a
maximum a linear effect on the execution time of the steps. This ensures scalability.

However, the parameters DataSourceNumber, RequestedPurposes and RequestedData-
Sources are noteworthy since they already have an execution time >/00ms in some tested
scenarios. Which is unacceptable for a system that is intended to work in real-time, therefore
further investigation research was executed.

In the following, the parameter RequestedDataSources is exemplary further analyzed.The
measured values of the benchmark evaluation indicate the RequestedDataSource parameter
has a direct, linear effect on the execution time of Purpose Authorization.

! purposeAuthorization =1,5708ms * RequestedDataSources + 100.69ms

The value RequestedDataSources determines the number of DataSource-elements from
which data should be queried. A request of /0.000 elements and even bigger numbers are
normal in data-warehouse scenario (e.g. for generating a statistic). With the given formula,
we already get the execution times for a RequestedDataSource of 10.000.

tpurposeAuthorization = 15808.69ms

These execution times for the step of PurposeAuthorization is not acceptable for a real-time
system. In order to optimize the software design, additional measurements were taken and
analyzed.

Put all requested and inherited Purposes to the key-set 7 ms
of which executing getInheritedPurposes 7 ms
Put the Data Sources to the relevant Purposes 1289 ms
of which executing getLppRelevantPurposes 1278 ms
Getting all not relevant Purposes of the key-set <1 ms
Remove all not relevant Purposes from the result map <1 ms

| Total execution time | 1296 ms |

Tab. 4: Detailed measured execution times of Purpose-Authorization for the benchmark test parameter
RequestedDataSource.

From the 71296 ms execution time of the step Purpose-Authorization, are 1286 ms waiting
for methods of other modules (PurposeRequestManager - the mocked persistence layer).
The pure computing time required by this step is approximately /0 ms.

Thus, we note that the high measured execution times of the RequestedDataSource pa-
rameter are due only to the time Mockito takes to process the getInheritedPurposes and
getLppRelevantPurposes methods. Further optimization of Purpose-Authorization does not
seem necessary to solve the original problem of long execution times for a high amount of
RequestedDataSource. By connecting the implementation to a high-performance persistence
layer, the execution time of the steps promise to be within an acceptable range. This

Policy-based Authentication and Authorization 253

determination can analogously be transferred to the parameters DataSourceNumber and
RequestedPurposes.

In summary, it can thus be stated that the measured execution times are very much influenced
Mockito, and that queries can be processed even faster by a high-performance persistence
layer. The aim of this section 4, however, was merely to show that the implementation can
also be used in large systems and is scalable. This could be demonstrated.

5 Related Work

Data protection and purpose-based storage and processing of personal data is not a new field
of research. Thereby, some privacy languages were already proposed, each with their own
distinct application [Gel8b]. In the context of authentication and authorization amongst
other the privacy languages AIR [Kh10], DORIS [BB88], E-P3P [As02], P2U [1V14], P3P
[Cr06], Ponder [SLLO1], Primelife policy language [Ar09], Rei [Ka02], SecPAL [BFG10],
SPECIAL [Kil8], XACL [BCF04], are worth mentioning.

But also in the context of database systems, purpose-based authorization has been introduced
in Hippocratic Databases [Ag02], which we will detail in the following. In contrast to the
Layered Privacy Language, the Hippocratic Database design is not to be considered as fixed
technology or framework [vTJ11], but as a vision of a database system that implements
the principles of Purpose Specification, Consent, Limited Collection, Limited Use, Limited
Disclosure, Limited Retention, Accuracy, Safety, Openness and Compliance. In the concept
of Hippocratic Databases, analogues to the Layered Privacy Language, Purposes are the
central component. For the stored data, the Purposes is attached, which is relevant for this
record, for example we look at the schema of 7Tab. 5. In contrast to the Layered Privacy

| purpose | customer id | name | email |

Tab. 5: Database Schema for Hippocratic Database.

Language, the Entity-Authentication is not part of the Hippocratic Database concept.
Furthermore, the Layered Privacy Language promises a more flexible Data-Authorization
with different configuration parameters (e.g. return only consented data from Data Subjects)
and so a more flexible usage of the framework.

6 Conclusion

The Layered Privacy Language defines six steps to privacy-preserving process data -
Entity-Authentication, Purpose-Authorization, Entity-Authorization, Data-Authorization,
Minimum Anonymization and Application of Privacy Model. The first four steps are detailed
and evaluated in this work. The benchmark evaluation shows that the implemented modules

254 Sebastian Wilhelm, Armin Gerl

are scalable and capable of processing complex requests (many requested data, extensive
data storage) efficient, which depends on an efficient backend.

For future works the remaining steps of the Policy-based De-identification process will
be evaluated, showing the introduced overhead of the policy processing against the de-
identification solely. Furthermore, we plan to introduce pseudonymization capabilities
utilitzing tokenization methodology in both LPL as well as the Policy-based De-identification
process. Another concern is the possibility of privacy inference that has to be detected and
prevented due to consecutive requests. Lastly, different scenarii, concerning relevant privacy
use cases, will be defined and used to evaluate the complete Policy-based De-identification
process based on LPL.

References

[Ag02] Agrawal, Rakesh; Kiernan, Jerry; Srikant, Ramakrishnan; Xu, Yirong: Hippocratic Databases.
In: Proceedings of the 28th International Conference on Very Large Data Bases. VLDB *02.
VLDB Endowment, pp. 143-154, 2002.

[Ar09] Ardagna, Claudio A; Bussard, Laurent; De Capitani di Vimercati, Sabrina; Neven, Gregory;
Pedrini, E; Paraboschi, S; Preiss, F; Samarati, P; Trabelsi, S; Verdicchio, M: Primelife policy
language. In: W3C Workshop on Access Control Application Scenarios. W3C, 2009.

[AsO2] Ashley, Paul; Hada, Satoshi; Karjoth, Giinter; Schunter, Matthias: E-P3P privacy policies
and privacy authorization. In: Proceeding of the ACM workshop on Privacy in the Electronic
Society - WPES '02. ACM Press, 2002.

[BB88] Biskup, Joachim; Briiggeman, Hans Hermann: The personal model of data:. Computers &
Security, 7(6):575-597, dec 1988.

[BCF04] Bertino, Elisa; Carminati, Barbara; Ferrari, Elena: Access control for XML documents and
data. Information Security Technical Report, 9(3):19-34, jul 2004.

[BFG10] Becker, Moritz Y.; Fournet, Cédric; Gordon, Andrew D.: SecPAL: Design and Semantics
of a Decentralized Authorization Language. J. Comput. Secur., 18(4):619-665, December
2010.

[Col6] Council of the European Union: , General Data Protection Regulation, April 2016. Regulation
(EU) 2016 of the European Parliament and of the Council of on the protection of natural
persons with regard to the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC.

[Cr06] Cranor, Lorrie; Dobbs, Brooks; Egelman, Serge; Hogben, Giles; Humphrey, Jack; Langhein-
rich, Marc; Marchiori, Massimo; Presler-Marshall, Martin; Reagle, Joseph M.; Schunter,
Matthias; Stampley, David A.; Wenning, Rigo: , The Platform for Privacy Preferences
1.1 (P3P1.1) Specification. World Wide Web Consortium, Note NOTE-P3P11-20061113,
November 2006.

[Gel8a] Gerl, Armin: Extending Layered Privacy Language to Support Privacy Icons for a Personal
Privacy Policy User Interface. In: Proceedings of British HCI 2018. BCS Learning and
Development Ltd., Belfast, UK, p. 5, 2018.

Policy-based Authentication and Authorization 255

[Gel8b] Gerl, Armin; Bennani, Nadia; Kosch, Harald; Brunie, Lionel: LPL, Towards a GDPR-

[GP18]

[IV14]

[Ka02]

[Kh10]

[Kil8]

Compliant Privacy Language: Formal Definition and Usage. volume Transactions on
Large-Scale Databases and Knowledge-Centered Systems (TLDKS) of Lecture Notes in
Computer Science (LNCS) 10940. Springer-Verlag GmbH Germany, part of Springer Nature
2018, chapter 2, pp. 140, 2018.

Gerl, Armin; Pohl, Dirk: Critical Analysis of LPL according to Articles 12 - 14 of the GDPR.
In: Proceedings of International Conference on Availability, Reliability and Security. ARES
2018, Hamburg, Germany, p. 9, August 2018.

Iyilade, Johnson; Vassileva, Julita: P2U: A Privacy Policy Specification Language for
Secondary Data Sharing and Usage. In: Proceedings of the 2014 IEEE Security and Privacy
Workshops. SPW ’14, IEEE Computer Society, Washington, DC, USA, pp. 18-22, 2014.

Kagal, Lalana: Rei: A Policy Language for the Me-Centric Project. Technical report, HP
Laboratories Palo Alto, 2002.

Khandelwal, Ankesh; Bao, Jie; Kagal, Lalana; Jacobi, lan; Ding, Li; Hendler, James:
Analyzing the AIR Language: A Semantic Web (Production) Rule Language. In (Hitzler,
Pascal; Lukasiewicz, Thomas, eds): Web Reasoning and Rule Systems. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 58-72, 2010.

Kirrane, Sabrina; Fernandez, Javier D.; Dullaert, Wouter; Milosevic, Uros; Polleres, Axel;
Bonatti, Piero A.; Wenning, Rigo; Drozd, Olha; Raschke, Philip: A Scalable Consent,
Transparency and Compliance Architecture. In: Lecture Notes in Computer Science, pp.
131-136. Springer International Publishing, 2018.

[SLLO1] Sloman, Morris; Lobo, Jorge; Lupu, Emil, eds. POLICY ’01: Proceedings of the International

Workshop on Policies for Distributed Systems and Networks, London, UK, UK, 2001.
Springer-Verlag.

[vTJ11] van Tilborg, Henk C. A.; Jajodia, Sushil: Optimal Extension Fields (OEFs). In: Encyclopedia

of Cryptography and Security. Springer US, Boston, MA, pp. 888-890, 2011.

