TopX - Efficient and Versatile Top-k Query Processing for
Text, Semistructured, and Structured Data

Martin Theobald Ralf Schenkel Gerhard Weikum

{mtb, schenkel, weikum} @mpi-inf.mpg.de
Mazx-Planck-Institut fiir Informatik

Abstract: This paper presents a comprehensive overview of the TopX search engine,
an extensive framework for unified indexing and querying large collections of unstruc-
tured, semistructured, and structured data. Residing at the very synapse of database
(DB) engineering and information retrieval (IR), it integrates efficient scheduling al-
gorithms for top-k-style ranked retrieval with powerful scoring models, as well as
dynamic and self-throttling query expansion facilities.

1 Introduction

The Web increasingly moves away from the collection of unstructured text it was 10
years ago. Nowadays, the Web is a huge pile of documents that are not only heteroge-
neous in their content, but also in the level of annotation and structure they provide. Com-
bining effective and efficient search over such heterogeneous collections within a single
search engine will remain a major challenge, especially when the structure of documents,
like in XML with potentially diverse schemata, hierarchical embeddings, and semantic
annotations, should be exploited by queries and be taken into account for result ranking.

The TopX engine aims to solve this issue, addressing and seamlessly integrating recent
trends of integrating DB and IR [CRWO0S5]. It is a comprehensive framework for unified
indexing and querying large collections of unstructured, semistructured, and structured
data, comprising a full-fledged solution for ranked retrieval on desktops or intranets with
annotated text or semistructured data, and, ultimately, the Web. It comes with a flexible, yet
powerful and self-throttling query relaxation and/or expansion technique as an adequate
means for coping with the inevitable diversity when merging various data sources that
provides a controlled influence on the result ranking. While the current implementation
focuses on IR-style search, the proposed methods and results can be carried over to various
application areas like multimedia similarity search on high-dimensional feature vectors
of images, music, or video, or preference queries over structured data such as product
catalogs or customer support data in a very straightforward way.

TopX seamlessly integrates efficient query evaluation and versatile scoring models for
ranked result output residing at the very synapse of database (DB) engineering and infor-
mation retrieval (IR). As for the DB point-of-view, we aim at providing an efficient algo-
rithmic basis for scalable, top-k-style processing of large amounts of data. Our focus lies
on adaptive, disk-oriented cost models for accessing large, disk-resident index structures,
with highly developed solutions for storing and efficiently querying large document col-
lections (possibly in the order of Terabytes). As for the IR point-of-view, TopX provides
a whole bunch of state-of-the-art, effective scoring approaches for Web IR, multi-attribute
structured data, and ranked XML retrieval including XML full-text search. It supports an
efficient, self-throttling query expansion mechanism that helps to increase effectiveness
for difficult queries in terms of both recall as well as precision at the top ranks.

475

Frontends
« Web Service
« Web interface !
« APL 74

TopX Core Query Processor
+ Cost-Based Random Access Scheduling

« Expensive Predicate Probing [| |

« Early Threshold Termination

Candidate Scan threads ——
Queue Sorted Access Top-k
in descending Queue

order of scores

|- Probabilistic
Candidate Pruning
& Garbage Collection @
Probabilistic
Index Access Candidate
Scheduling Cache
7 Query Expansion
Incremental Path

Evaluation for .
Content & Structure Auxiliary
I’ Predicate Probing

_
[S— Large Corpus
Thesaurus with Correlation Statistics -
Statistically DBMS / Inverted Lists
Quantified Concept T
xt & XML Schem:
Similarities Index List Meta Data Gk S
(eg., j
——— Indexer/Crawler

]

Figure 1: TopX Architecture

$5200Y WOPUEY

Query Precessing Time

Precomputation Time

2 TopX System Overview

Figure 1 depicts the TopX main components. TopX comes with different, general-
purpose Web and file crawlers for indexing text and XML data in a generalized schema
on top of a relational back-end (which is described in the following for Oracle 10g but
could easily be generalized to arbitrary DBMS or even a completely customized index
using inverted files). The TopX core query processor is in charge of the bookkeeping of
intermediate results and coordinates the sequential and random index list accesses in a
multi-threaded architecture. It provides the algorithmic basis for exact and efficient top-k
query evaluations with early threshold termination, with the option of gradually plugging
in specialized components for probabilistic candidate pruning and cost-oriented index ac-
cess scheduling that help to substantially accelerate query executions, as well as dynamic
query expansion for IR-style vague search. Different levels of probabilistic extensions
can stepwisely be incorporated for the probabilistic components, including basic selectiv-
ity estimators, more sophisticated index list histograms, or parameterized score estimators
with convolutions for aggregated scores, index list correlations, and structural selectivity
estimators for basic XML patterns such as twigs and path structures.

TopX provides both an interactive Web frontend for human users and a Web Service API
to be used by other applications. An online live demo of the system is available at http:
//infao5501.mpi-inf.mpg.de:8080/topx. TopX is completely implemented
in Java and deployable as a Tomcat servlet, with a code base of approximately 37,500
lines of code in 198 classes. It is available as a full-featured open-source package from
http://topx.sourceforge.net.

3 Querying Text Data
3.1 Index Structures

As for plain text retrieval, queries consist of a set of (possibly weighted) keywords or
terms. The result of such a query is a ranked list of documents. TopX precomputes, for
each term, an index list by which one can access the document identifiers in descending
order of the “local” score with regard to this term, for example, the TF-IDF- or BM25-

476

based score [GF05]. These lists are stored on disk in a relational Oracle database in a
table TextFeatures(term, docid, score), where docid is a numerical id of documents.
Efficient sequential or sorted access (SA) and random access (RA) on top of the DBMS is
supported by two B -trees on the attributes concatenated in the order (term, score, docid)
for SA and in the order (docid, term, score) for RA. Additionally, optional index list meta
data such as score histograms and term correlation statistics are precomputed and stored
in the database and may be leveraged to accelerate query executions.

3.2 Core Query Engine

In order to find the top-k matches for multidimensional queries, scoring, and rank-
ing them, TopX adopts and substantially extends variants of the best-known, general-
purpose algorithm for evaluating top-k queries, Fagins family of threshold algorithms
(TA)[FLNO1]. These algorithms leverage the observation that sequential disk I/O (i.e.,
sorted index scans) largely benefit from asynchronous prefetching and a high locality in
the hardware’s and processor’s cache hierarchy; so sorted access has much lower amor-
tized cost than random disk access that is inevitably requiring additional index structures
and key lookups for individual object identifiers.

TopX scans all relevant index lists in an interleaved manner; for efficiency, sorted ac-
cesses are performed in batches of fixed size b. In each scan step, when the engine sees
the score for a document in one list, it is hash-joined with the partial scores for the same
document previously seen in other index lists and aggregated into a global score. The al-
gorithm maintains the worst score among the current top-k results and the best possible
score for all other candidates and documents not yet encountered, by adding to the worst
score the current top scores of all lists where the candidate has not yet been seen. The best
score serves as a threshold for pruning a candidate when its best score does not exceed
the worst score of the currently k*” ranked result; the index scans are stopped when no
candidate exceeds this threshold.

Efficient Candidate Queuing: While this focus on inexpensive sequential scans of-
ten results in a good query performance, it leaves uncertainty about the final scores of
candidates and therefore implies some form of bookkeeping or queuing not only for the
intermediate top-k results, but for all candidates that may still qualify for the final top-k.
We investigated various queuing options for efficient candidate management in real-world,
large collection setups; it turned out that usually, the most effective approach is the combi-
nation of a queue of bounded length with a hash-based cache. Albeit a heuristic, the queue
bound ¢ may be chosen in the order of the batch size b which is typically a safe choice.
Then testing the top candidate in the queue with the k' ranked top-k item allows for a
lightweight, any-time threshold test for algorithm termination [TWS04].

Index Access Scheduling: In addition to the sequential disk accesses for sorted index
scans, the query engine also has the option of performing random accesses to directly re-
solve score uncertainty of documents. Altogether, this entails scheduling for the two types
of disk accesses: 1) the prioritization of different index lists in the sequential accesses,
and 2) the decision on when to perform random accesses and for which candidates. Both
types involve highly specialized probabilistic cost models, thus leading to individual in-
dex access scheduling decisions for result candidates which can substantially improve the
performance of the retrieval engine with no loss in result quality [BMT06b].

Probabilistic Candidate Pruning: Since the user’s goal behind a top-k query usually
is not to find exactly the k best data items with regard to some ranking model, but rather
to incrementally explore a topic and to identify one or a few relevant and novel pieces

477

of information, it is intriguing to allow IR-style, approximate variants of the threshold
family of algorithms to reduce runtime costs. TopX provides an optional approximate
top-k algorithm based on probabilistic arguments [TWS04]. When scanning index lists,
various forms of convolutions over underlying score distributions and derived bounds are
employed to predict whenever it is safe, with high probability, to drop candidates and
to prune the index scans for early algorithm termination. These probabilistic candidate
pruning techniques can provide up to two orders of magnitude performance gains with a
controllable loss in result quality and a very good quality/runtime ratio.

Multi-threaded Query Processing: The query processor is organized as a triple-tier,
multi-threaded hierarchy consisting of a single main thread that iteratively maintains the
data structure for candidate bookkeeping and optionally updates probabilistic predictors
for candidate pruning and adaptive scheduling decisions after a batch of b index accesses;
scan threads that continuously read and join input tuples from the inverted list buffers for
a batch of sorted accesses, and buffer threads that continuously refill a small buffer cache
and control the actual disk I/O for each inverted list. This three-level architecture builds
on the observation that candidate pruning and scheduling decisions are computationally
expensive and should be done only iteratively, because joining and evaluating score bounds
for candidate may incur high CPU load, while the actual sequential index accesses are
not critical in terms of CPU load. Synchronization (i.e., object locking) for shared data
structures only takes place when a candidate is pulled from the cache and the queue is
updated, or when (occasionally) a new candidate is promoted into the top-k queue.

Top-k Shifts: The TopX query processor supports incrementally increasing the num-
ber of query results, &k, without the need for restarting the whole query, thus addressing
the typical behavior of a human surfer who may first look and digest the first page of 10
results, then eventually browses through the next page, and so on. In this interactive set-
ting, in-memory candidate pruning is disabled; whenever k is increased, the currently best
k candidates are identified and the scan threads continue scanning until the new top-k’
candidates are found.

4 Querying XML Data

In XML IR, retrievable units are no longer whole documents but individual XML ele-
ments. Query languages for XML IR like W3C’s XQuery 1.0 and XPath 2.0 Full-Text or
NEXI [TS04] combine content conditions on elements with structural conditions like tag
names and paths. A typical example for such a content-and-structure (CAS) query is the
NEXI query //article//section[about (., '*XML database’’) and
about (.//figure, ‘architecture’’)] that searches for article sections about
XML databases (which is a content condition) that include a figure about the architecture
(i.e., that has this term somewhere in its content). As a special case, content only (CO)
or wildcard queries like //* [about (., *‘XML’’)] do not restrict the tag of target
elements — similarly to keyword queries in text retrieval — but continue to return XML
elements instead of whole documents. To search a collection with a heterogeneous or
complex schema, a user would probably start with a CO query and would then refine it to
a CAS query, either manually or with system support.

4.1 Index Structures

Extending the per-term inverted lists from text IR, TopX indexes occurrences of terms
in XML elements together with the corresponding tags, i.e., it maintains index lists for
combined tag-term pairs [TSWO05b]. Such a tag-term list consists of all elements with the

478

tag that have the search term in their content, together with the corresponding document’s
id, some navigational information, the local score, and the maximal local score of any el-
ement in the same document within that list. Local scores are computed using a variant of
the BM25 scoring model that has been adapted for XML, by considering individual ele-
ment frequencies and element sizes instead of the document-based counterparts in classic
text IR. All elements within the same document are grouped together and form a coherent
element block in the inverted lists, which are then sorted by descending maximal element
score. As navigational information that supports all XPath axes, we store the pre, post
and level numbers using the XPath accelerator technique [Gru02], in order to implement
a combined inverted index for XML content and structure in a compact way.

Inside the Oracle database, the tag-term lists are stored in a single index-only table
(IOT), using the schema TagTermFeatures(docid, tag, term, score, maxscore, pre,
post, level), that allows for efficient random index accesses to all instances of a tag-
term pair within a document. For efficient sorted accesses, we build an additional B -
index over the full range of attributes, but in the order (tag,term,maxscore,docid,
score, pre, post, level); a sorted scan then corresponds to an index range scan for a given
(tag,term) key. As an additional enhancement, we use Oracle’s index key compression
option to automatically truncate redundant index key prefixes and skip dispensable key
prefix replications at the inner index nodes of the B -tree structures.

4.2 XML Extensions to the Query Engine

For each tag-term pair occurring in the query, TopX scans the corresponding list in
descending max-score order, reading complete blocks instead of single elements. Such a
sequential block scan prefetches all tag-term pairs for the same document-id in one shot
and keeps them in memory for further processing, which we refer to as sorted block-scans.

To answer a content-and-structure query, we need to find an embedding of the query
structure, which may form a directed acyclic graph (DAG), into the document tree. This
embedding is not necessarily unique, as there may be multiple valid embeddings per doc-
ument, because several of its elements may match each of the tag-term conditions. Score
bounds are then computed for each document, derived from the score of the best embed-
ding found so far. TopX by default returns documents as entry points to answer a query,
with the option to show for each document either only the best embeddings or all em-
beddings ranked by aggregated element scores. Internally, a hybrid processing technique
combines document- and element-specific query processing in a single engine: in docu-
ment mode the k*" document’s score is used for pruning, in element mode the &’ ** best
embedding (obtained from the &’ < k elements) determines the threshold which allows an
even more aggressive pruning.

In non-conjunctive (aka. “andish”) retrieval, a result document (or subtree) should still
satisfy most structural constraints, but we may tolerate that some tag names or path con-
ditions are not matched. This is useful when queries are posed without much information
about the underlying schema (which is typical for document-centric XML like articles
etc.), so the structural constraints merely provide a hint on how the actual text contents
should be connected. In conjunctive query mode on the other hand, i.e., when all con-
tent and structure conditions have to be matched, if C in the above example is not a valid
descendant of A, we may already safely prune the candidate document from the priority
queue. TopX provides different approaches to judiciously schedule random accesses for
testing the structural query conditions only for the most promising candidates according to
their content-related scores [TSWO05b] obtained through inexpensive sequential disk I/O.

479

5 Querying Structured Data

TopX treats data with a well-defined structure (e.g., data from a relational database, but
also data-centric XML) as a special case of semistructured data, conceptually mapping
non-XML data to a virtual XML document. As an example, for relational data, each tuple
of a table corresponds to a document, and its attribute-value pairs are mapped to child
elements of this document’s root. Retrieval then considers only the XML-ified data, where
queries are conjunctions of elementary conditions of the form A=B (A is an attribute name,
B is a value) that are automatically mapped to the corresponding XML queries.

6 Dynamic Query Expansion

TopX can utilize automatic query expansion to enhance result quality for difficult queries
where good recall and/or precision at the top ranks is a problem. For difficult text queries
like the ones in the TREC Robust track [TRE], e.g., queries for “transportation tunnel
disasters” or “ship losses”, query expansion needs to integrate external knowledge. State-
of-the-art approaches use one or a combination of the following sources to generate addi-
tional query terms: thesauri such as WordNet with concept relationships and some form
of similarity measures, explicit user feedback or pseudo relevance feedback, query associ-
ations derived from query logs, document summaries such as Google top-10 snippets, or
other sources of term correlations. In all cases, the additional expansion terms are chosen
based on similarity, correlation, or relative entropy measures.

6.1 Ontology Service

The TopX Ontology Service provides unified access to multiple thesauri or ontology
sources such as WordNet or OpenCyc in a compact APIL. Internally, the ontology service
maintains a concept graph where the nodes denote the meaning of a set of terms and the
edges are form the semantic relationships between concepts (like hypernyms, meronyms,
antonyms, etc.) as provided by the different sources. The similarity of two related nodes is
estimated by the correlation of the corresponding terms in a large corpus, e.g., using statis-
tical measures such as Dice coefficients. The Ontology service further facilitates methods
to disambiguate a term in a given document context and for finding related concepts that
are similar to it.

6.2 Static vs. Dynamic Expansion

Static query expansion approaches typically choose a fixed set of expansion terms from
an external knowledge base based on a predefined similarity threshold. However, such a
static expansion technique faces three major problems [BZ04]: (1) the threshold for select-
ing expansion terms needs to be carefully hand-tuned for each query, (2) an inappropriate
choice of the threshold may result in either not improving recall (if the threshold is set too
conservatively) or in topic dilution (if the query is expanded too aggressively), and (3) the
expansion may often result in queries with more than 50 or 100 terms, which in turn leads
to very high computational costs in evaluating the expanded queries.

TopX addresses these issues and provides a practically viable, novel solution [TSWO05a].
Our key techniques for making query expansion efficient, scalable, and self-tuning are to
avoid aggregating scores for multiple expansion terms of the same original query term
and to avoid scanning the entire index lists for all expansion terms. For example, when the
term “disaster” in the query “transportation tunnel disaster” is expanded into “fire”, “earth-
quake”, “flood”, etc., we do not count occurrences of several of these terms as additional

480

evidence of relevance for a document. Rather than that, we use a max-score aggregation
function that counts only the best match of a document out of all possible expansions for
the same original query concept, optionally weighted by the similarity of the expansion
to the original concept. Furthermore and most importantly for efficiency, we open scans
on the index lists for expansions as late as possible, namely, only when the best possible
candidate document from a yet unseen part of the expanded index lists may still contribute
to the top-k results.

The algorithm conceptually merges the index lists of the expansion terms with the list
of the original query term in an incremental, on-demand manner during the runtime of the
query in descending order of scores. For further speed-up, probabilistic score estimations
can be used as well. The great advantage of this method is that we do not have to pre-
determine the depth of the scanning and merging process itself. The superordinate top-k
operator just incrementally inquires the subordinate Incremental Merge operator for the
next document on-the-fly, thus preserving the efficient sorted access paradigm.

7 Nested Top-k Operators

For more sophisticated query sub-conditions such as phrase expansions, local scores for
individual conditions cannot be fetched from materialized index lists but need themselves
to be computed dynamically. This poses a major problem to any top-k algorithm that
wants to primarily use sorted accesses. A possible remedy would be that the global top-k
operator “guesses” a value k' and asks the dynamic source to compute its top-k’ results
upfront, with k&’ being sufficiently large so that the global operator never needs any scores
of items that are not in the local top-£’.

TopX treats such situations by running a nested top-k operator on the dynamic data
source(s), which iteratively reports candidates to the caller (i.e., the global top-k operator),
and efficiently synchronizes the candidate priority queues of caller and callee. The callee
starts computing a top-oo result in an incremental manner, using a TA-style method itself
without a specified target &, hence top-oo. It gradually builds a candidate queue with upper
and lower score bounds for each candidate. The caller periodically polls the nested top-k
operator for its currently best intermediate results with their score bounds and integrates
this information into its own bookkeeping. From this point, the caller’s processing simply
follows the standard top-k algorithm (but with score intervals instead of scores). Note
that this architecture also allows for a special Boolean — but ranked — retrieval mode, e.g.,
enforcing conjunctions at the top-level top-k operator while allowing disjunctions at the
leaf operators for high-dimensional expansion tasks.

8 Evaluation

We focus our experiments with textual data on the TREC Terabyte collection which is
the largest benchmark corpus currently being available with relevance assessments, con-
sisting of about 25 million documents with a size of roughly 425 GB, with 50 reference
queries from the 2005 Terabyte Ad-Hoc task. For XML, we chose the new 6 GB INEX
Wikipedia collection with about 660,000 XML-ified Wikipedia articles and the respective
batch of the 125 INEX 2006 Ad-Hoc queries. On a mainstream server machine with a dual
XEON-3000 CPU, 4GB of RAM, and a SCSI RAID-5, indexing these collections took
between 280 minutes for INEX and 14 hours for Terabyte, including stemming, stopword
removal, and computing the BM25-based scores. The materialization of the B*-indexes
required roughly the same amount of time as it included sorting a huge intermediate table.

As for efficiency, we consider abstract query execution costs defined as cost = #SA +

481

cr/cs #RA, i.e., a weighted sum of the number of tuples read through sorted and random
accesses from our disk-resident index structures, as our primary metric analogously to
[FLNOI1]. The cost ratio cg/cs between a single sorted vs. a single random access has
been determined to optimize our runtime figures at a value of 150, which nicely reflects
our setup using Oracle as backend and JDBC as connector, with a relatively low sequential
throughput but good random access performance because of the caching capabilities of the
DBMS. Wallclock runtimes were generally good but much more sustainable to these very
caching effects, with average CPU runtimes being in the order of 0.3 seconds for Wikipedia
and 1.2 for Terabyte, and wallclock runtimes being 3.4 and 6.2 seconds, respectively. All
the reported cost figures are sums for the whole batch of benchmark queries, whereas the
precision figures are macro-averaged.

8.1 Terabyte Runs — Efficiency vs. Effectiveness

Figure 2 compares the cost figures for TopX on the Terabyte setup with a DBMS-style
merge join that first joins all documents in the query-relevant index lists by their id and
then sorts the joined tuples for reporting the final top-k results (eventually using a partial
sort). For k& = 10, the non-approximate TopX run with the conservative pruning already
outperforms the full-merge by a factor 5.5, while incurring query costs of about 9,323,012
compared to 54,698,963 for the full-merge. Furthermore, we are able to maintain this good
performance over for a very broad range of k; only queries of considerably more than 1,000
requested results would let our algorithm degenerate over the full-merge approach.

The approximate TopX with a relatively low probabilistic pruning threshold of ¢ = 0.1
generally performs at about 10 percent lower execution costs than the exact TopX setup
which confirms exactly to the pruning behavior we would expect and the probabilistic
guarantees for the result quality we provide in [TWS04].

1.0

S
3

09 =& Abs. Precision
0.8 \ —#-Rel. Precision

-®-Full Merge 0.7 ‘-\ —# ApproxCost / ExactCost

(Millions)
w
3

0.6

\

~&-TopX - £=0.0

&= TopX - £=0.1 /-4/ 054
04

03

Cost

- w
s S

02

— 0.1

0 0.0

10 20 50 100 200 500 1,000 0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
k €

Figure 2: Query execution costs for Terabyte as Figure 3: Relative vs. absolute precision for
functions of k. Terabyte as functions of ¢, for £ = 10.

Figure 3 investigates the probabilistic pruning behavior of TopX for the full range of
0 < e < 1forafixed value of k = 10, with ¢ = 1.0 (i.e., the extreme case) meaning that we
immediately stop query processing after the first batch of b sorted accesses. Since Terabyte
is shipped with official relevance judgments, we are able to study the result quality for both
the relative precision (i.e., the overlap between the approximate and the exact top-k) and
the absolute precision (i.e., the fraction of results officially marked as relevant by a human
user for a particular topic). We see that the relative precision drops much faster than the
absolute precision which means that, although different documents are returned at the top-
k ranks, they are mostly equally relevant from a user perspective. Particularly remarkable
is the fact that the ratio of the execution cost between the approximate and the exact top-k
generally drops at a much faster rate than both the absolute and relative precision values.
This observation holds for all collection and query setups we considered so far.

482

8.2 Wikipedia Runs - Efficiency vs. Effectiveness

As for Wikipedia, we provide a detailed comparison of the CO and CAS interpretations
of the queries. Figure 4 shows that we generally observe similarly good performance
trends as for Terabyte, with cost-savings of a factor of 7 for CAS and 2.5 for CO, and the
performance advantage remains extremely good even for large values of k, because we
never need to scan those long (i.e., lowly selective) element lists for the navigational query
tags which would have to be performed by any non-top-k-style algorithm.

— 40 1.0
z 0o A\ - CAS - Rel. Precision
£ 35 T [=-CAS - Full Merge N_— -0-CO - Rel. Precision
€ 30 4 -0-CO - Full Merge 08 \ —#=CAS - ApproxCost / ExactCost
55 do] B CAS - TopX - 6=0.0 |, - . 077 ~—=CO - ApproxCost / ExactCost
- &= CAS - TopX - £=0.1 /D/ 0.6
2
5 20 +— =O-CO - TopX - &=0.0 // 054
15] =00 - TopX - e=0.1 & 0] \
0 03

10 20 50 100 500 1,000
k €

Figure 4: Query execution costs for Wikipedia Figure 5: Relative precision for Wikipedia as
as functions of k. functions of ¢, for k£ = 10.

Figure 6 depicts a detailed comparison of the query costs being split into individual
sorted (#SA) and random (#RA) disk I/Os for the CO and CAS flavors of the Wikipedia
queries. It shows that we successfully limit the amount of RA to less than about 2 percent
of the #SA according to our cost model. This ratio is maintained also in the case of
structured data and -queries which is a unique property among current XML-top-k engines
(see also [TSWO05b] for a comparison to state-of-the-art competitors). Figure 7 shows an
impressive runtime advantage for the dynamic query expansion approach compared to both
full-merge and TopX when performing static expansions (measured for the CAS case). The
reported numbers reflect large, automatic thesaurus expansions of the original Wikipedia
queries based on WordNet, with up to m = 292 distinct query dimensions (keywords).
Figure 6 finally demonstrates a similarly good pruning behavior of TopX for both the CO
and CAS queries in Wikipedia, again showing a very good quality vs. runtime ratio for the
probabilistic candidate pruning component.

0y 120 4
W#RA

30 O#SA

H#RA
O#SA

(Millions)
3
(Millions)

80

25
20 60 1
15

404
10
5 204
0 T T T

co

0 T T
CAS- CAS- CO - CAS- CAS- CAS-

Full TopX Full TopX Full TopX- TopX-
Merge Merge Merge Static Dynamic

Figure 6: #SA and #RA for full-merge vs. Figure 7: #SA and #RA for full-merge vs.
TopX, for k = 10 and ¢ = 0. TopX, for k = 10 and e = 0.

8.2.1 Further Experiments

TopX has been extensively evaluated throughout two years of active participations in the
two major benchmark series in IR, using the largest available collections of the Text RE-

483

trieval Conference (TREC) [TRE] on text IR and the Initiative for the Evaluation of XML
Retrieval (INEX) [M*06] focusing on XML IR. For INEX, the 2005 benchmark included
a set of 40 keyword-only and 47 structural queries with relevance assessments that were
evaluated on the INEX IEEE corpus. TopX performed very well for CAS queries, rank-
ing among the top-5 of 25, with a peak position 1 for two of the five official evaluation
methods. See [TSW06, BMTT06a, TSW07] for more detailed discussions of the results
on various TREC and INEX tasks.

9 Conclusions and Future Work

TopX is an efficient and effective search engine for unstructured, semistructured, and
structured data. Our future work will concentrate on (1) including linkage information
in the retrieval process, especially for XML, (2) extending our top-k algorithms to sup-
port non-monotonous scores like proximity, and (3) implementing an efficient inverted
file structure. TopX has been the official host used for the INEX 2006 topic development
phase, and its Web Service interface will be used by the INEX 2006 Interactive Track.
During the topic development phase, more than 20,000 CO and CAS queries from roughly
70 different participants world-wide were conducted partly in parallel sessions over the
new Wikipedia XML index.

*Bibliography

[BMT"06a] Holger Bast, Debapriyo Majumdar, Martin Theobald, Ralf Schenkel, and Gerhard
Weikum. IO-Top-k at the TREC Terabyte track 2006. In TREC, 2006.

[BMT"06b] Holger Bast, Debapriyo Majumdar, Martin Theobald, Ralf Schenkel, and Gerhard
Weikum. I0O-Top-k: Index-access Optimized Top-k Query Processing. In VLDB,
2006.

[BZ04] Bodo Billerbeck and Justin Zobel. Techniques for Efficient Query Expansion. In
SPIRE, 2004.

[CRWO5] Surajit Chaudhuri, Raghu Ramakrishnan, and Gerhard Weikum. Integrating DB and
IR Technologies: What is the Sound of One Hand Clapping? In CIDR, 2005.

[FLNO1] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal Aggregation Algorithms for
Middleware. In PODS, 2001.

[GFO05] D. A. Grossman and O. Frieder. Information Retrieval. Springer, 2005.

[Gru02] Torsten Grust. Accelerating XPath location steps. In SIGMOD, 2002.

M106] Saadia Malik et al. Overview of INEX 2005. In INEX, 2006.

[TRE] Text REtrieval Conference. http://trec.nist.gov/.

[TS04] Andrew Trotman and Borkur Sigurbjornsson. Narrowed Extended XPath

I (NEXI). available from http://www.cs.otago.ac.nz/postgrads/
andrew/2004-4.pdf, 2004.

[TSWO05a] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. Efficient and Self-tuning
Incremental Query Expansion for Top-k Query Processing. In SIGIR, 2005.

[TSWOS5b] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. An Efficient and Versatile
Query Engine for TopX Search. In VLDB, 2005.

[TSWO06] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. TopX & XXL at INEX 2005.
In INEX, 2006.

[TSWO07] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. TopX at the INEX Ad-Hoc
and Relevance Feedback tasks 2006. In INEX, 2007.

[TWS04] Martin Theobald, Gerhard Weikum, and Ralf Schenkel. Top-k Query Evaluation with
Probabilistic Guarantees. In VLDB, 2004.

484

