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Abstract: In this paper we study the operation of incremental data extraction from
declarative knowledge bases and the problem of decomposability of data in such KBs,
by viewing them as first-order logical theories. The operation of incremental data ex-
traction is closely connected with query reformulation in information retrieval and data
integration, while the decomposability problem is important in the scope of modular-
ization and distributed processing of knowledge.

1 Introduction

At present, there is a significant interest to methods and tools of declarative knowledge
representation, which is in particular connected with the wide-spread notion of formal
ontology and the Semantic Web paradigm. The outcome of this is development and appli-
cation of new descriptive languages, as well as reasoning or deductive systems. Each of a
newly appeared languages corresponds to some subset of First Order Logic (FOL). How-
ever, judging from practice, ontological engineers have realized the need of the full FOL
to work with the information they encounter. In this work, we consider declarative knowl-
edge bases as first-order (elementary) theories, i.e. sets of closed formulas of the predicate
calculus. We distinguish two scenarios of their use in practical applications, namely, for
search in large data repositories and for integration of heterogeneous data sources. In spite
these two scenarios have much in common, they are approached differently in the field
of information management. The first one is mostly considered in conjunction with the
Internet search problem, however there are many other actual applications [1, 2, 8]. In
this scenario, queries are formulated in terms represented by a declarative description of
the subject domain of interest. Usually, there is an initial query, which is to be reformu-
lated or strengthened/relaxed according to the relevance of search results or according to
other alternative criteria. All query transformations are performed basing on the data in
the given formal description of the subject domain. The second scenario is best reflected
in the present research on Peer-to-Peer systems [5, 6]. The purpose of declarative descrip-
tions in this case is to represent a conceptual schema of a data source, i.e. to describe the
knowledge it provides access to. A query built in terms of one data source is reformu-
lated in terms of another one to provide data exchange and distributed information search.
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Thus, it is necessary to find a correspondence or to build a mapping between two declara-
tive descriptions. In most of cases, there is no need to build a correspondence between two
descriptions as a whole. Instead, some part of a description containing the key query terms
is needed to be mapped onto another one. How this part is chosen, greatly influences the
“precision of mapping”, which clearly, has lots of consequences.

In both scenarios, such declarative descriptions are themselves used like data sources, but
the information extracted from them is mostly not sets of constants, but sets of expressions
or formulas, which are treated as facts in solving a given task. Proceeding from these
two scenarios, we define in Sect. 2 the operation of incremental data extraction from
declarative knowledge bases. Next, we formulate the problem of decomposability by the
example of this operation and propose a solution of this problem. Section 4 contains some
final remarks and outlines the content of the planned talk.

2 The Operation of Incremental Data Extraction

In our work we consider declarative knowledge bases as elementary theories, i.e. con-
sistent sets of sentences in the FOL language. By incremental data extraction from a
knowledge base, we mean here a sequential selection of sentences according to some pre-
defined strategy. We consider this to be the most general view at the use cases mentioned
in the introduction. Indeed, in the first scenario, a typical algorithm starts, for example,
from some set of constant symbols as an input. Then it uses relations defined on these
symbols to extract new constants, then uses formulas expressing relation properties and so
on. All the extracted information is used in the search. Sometimes, a choice of some set
of formulas may be rejected for the reason of poor relevance of search results, and another
set can be chosen instead. In most of cases, it is hard to predict an effect of usage of this
or that information in a concrete search task. At least it is possible to choose between
different ’types” of formulas, e.g. ground, restrictive or non-restrictive clauses. An ex-
cellent illustration of this kind of strategies can be found in papers devoted to algorithms
of database schema matching [4, 3]. The operation of incremental data extraction can be
based on quite different strategies, but we argue that the very basic and common strategy
of this operation can be considered from a purely syntactical point of view. Further we
formally define the operation of incremental data extraction.

Let 7 be an elementary theory in a signature 3. That is, 7 consists of sentences that
contain symbols only from Y. We may assume that signatures consist only of predicate
symbols, as functions of arbitrary form can be substituted by corresponding predicates via
the standard representation of functions by graphs. Let us define an auxiliary function
Sig : T— 2% that we will use throughout this paper. For any set of sentences from 7 this
function gives a set of signature elements occurring in these sentences.

Definition 1 Let T be an elementary theory in a signature 3. A relation
R C ¥ x Y is called a syntactical relation on T | if

VabeX ((a,b) e Re— T T (ac Sig(e)andb c Sig(p)))
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Figure 1: Representation of the thesaurus via a syntactical graph.

We will further use the symbol R to denote syntactical relations. The reader might have
a doubt about this definition, as the relation R depends on the form of formulas in the
theory. We will explain, how we address this problem in Sect. 3. We assume that by
formally describing a subject domain, all the considered terms are mapped onto signature
symbols of the constructed theory. One may consider this as determining an alphabet of
a language for describing the subject domain. We also take an assumption that there is
a connection between two terms, if there exists a sentence in the theory, which contains
signature symbols denoting these terms. Thus, for a given theory 7 in a signature ¥ we
may consider a syntactical graph with the set of vertices equal to X, the set of edges equal
to the set of sentences of 7 and with the incidence relation R. Let us illustrate this by a
simple example with a thesaurus.

Example 1 Let ¥ = {A,B,C,D} and T ={Vz(A(z) — D(x)), Vz(B(z) — C(x)),
Va(C(x) — D(x))}. The representation of this kind of a thesaurus in a form of a syntac-
tical graph is illustrated in Fig. 1 (the quantifiers and variables are omitted for brevity).

In the scope of the scenarios considered at the beginning of this section, we may figu-
ratively speak about key concepts as some subset of vertices and a radius around these
vertices, which represents how much of the known information about them is used in solv-
ing a concrete task (e.g., a search task).

Definition 2 We define the operation of incremental data extraction as the following two
complementary actions:

i) extending a given subset o C ¥ via the relation R (i.e., for a sentence ¢ € T, we add
new elements from Sig(p) to o, if Sig(yp) N o # @);

ii) extending a given subset S C T, via the relation R (i.e., we add a sentence ¢ € T,
© & S, if there exists 1 € S, such that Sig(p) N Sig(yh) # ).

3 The Decomposability Problem

Let us generalize the definition of the syntactical relation on signature elements. To pre-
serve mathematical correctness we will further assume that theories, we consider, are de-
ductively closed. In this case they are uniquely defined by sets of their axioms. So, instead
of speaking about a theory, we will further consider systems of axioms of this theory.
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Definition 3 Let us call two signature symbols p, q € 3 directly connected (by a system
D of axioms of a theory T ), if p and q belong to one axiom ) € ®.

Correspondingly, let us call p and q connected (by a system ® of axioms), if there exists a
sequence of symbolsp = t1, ..., tq4 = q,inwhich every pair t;, t; 11 is directly connected.

The connectedness relation is the equivalence relation on signature symbols, so for a theory
7 in a signature ¥ we may consider different connectedness (equivalence) components. It
is necessary to clarify an important question concerning our idea to employ connectedness
of symbols in Sect.2. Indeed, do we have unique connectedness components for different,
but (logically) equivalent sets of sentences? In general, the answer is negative and the
reason of this is, clearly, the syntactical nature of our approach. In practice, this means
there may exist two sets of sentences that semantically mean the same, but are written
differently. For example, a sentence may have invalid occurrences of symbols in the form
of p V —p, which add nothing from the semantic point of view, but change the sentence
syntactically. Moreover, sentences can be glued with each other by conjunctions in arbi-
trary manner. In particular, all axioms of a finitely axiomatizable theory can be glued into
one axiom, from which all the sentences of the theory can be derived. This leads us to the
following question: given a theory 7 in a signature X, is it possible to reduce 7 (axioms
of 7) to a form that uniquely determines connectedness components on ¥? This question
is the reformulation of the decomposability problem posed in [7] in connection with study
of formal ontologies. In the following, we formulate this problem and outline our solution,
which is given in more detail in [9].

Definition 4 Let us consider a signature 3 and a theory T in this signature. The theory
T is called decomposable, if its signature can be represented as a disjunctive union 3, =
31 U3, 31N 3Xe = &, such that there exists a system of axioms S = S1 U So, in which
sentences of S;, i = 1,2 contain symbols only from %;. We will denote a decomposition
of theory as T= S ® Sa, and decomposition of signature as ¥ = X1 [ [ £a.

A theory 7 may, obviously, have a trivial decomposition, in which 1 = @ or ¥y = &,
and the set of sentences 57 (correspondingly, S3) consists of those sentences of 7, which
do not use any signature symbols. Such kind of decomposition is of no interest to us,
that is why we will further assume that a theory is decomposable, iff it has a non-trivial
decomposition, in which ¥, # @ # X,. A theory that has only trivial decompositions
will be called non-decomposable. For instance, if a signature X consists of one predicate
symbol, then any theory in this signature (even defined by the empty set of axioms) is
non-decomposable.

Problem 1 Consider a theory T in a signature X, defined by some set of axioms ® in the
signature 3. How is it possible, having the set ®, to determine, whether T is decompos-
able?

The question of decomposability of theories has significant importance in the field of for-
mal knowledge representation. Since decomposability means the possibility to split a
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formal representation of a considered subject domain into parts, each described by a sepa-
rate set of terms. For instance, when building a formal description of a subject domain, it
often turns out that data obtained from an expert (or extracted automatically) is a mixture
of facts that are needed to be structured in order to obtain an adequate model. In partic-
ular it may be interesting, if there exist parts of the knowledge that are independent from
each other. This exactly corresponds to the question of decomposability, if one considers
a formal description of a subject domain as a logical theory (say, in some subset of the
language of the first-order logic). The decomposability problem is important for reason-
ing over large ontologies and, in particular, for checking their consistency. If ontology can
be decomposed into several parts having different signatures, then they can be checked
for consistency separately. This, in turn, allows for distributed execution of this operation.
There are also other examples that originate from the fact, that in any field of knowledge
decomposition always means simplification.

Basing on the Craig’s interpolation theorem [10, 11], we have proved that for any first-
order (elementary) theory 7 in a signature X, the disjunctive decomposition ¥ = X ...
[1%, that corresponds to a decomposition of the theory 7=81®...Q®S,, is uniquely
defined (Theorem 1 below). We have shown, how any system of axioms of a theory can
be reduced to such form that uniquely determines this decomposition. Surprisingly, no
matter what system of axioms one chooses, the decomposability components are always
the same.

In the following, we list the main statements from the proof of this fact.

As we have mentioned above, invalid occurrences of symbols (like p V —p) in sentences of
a theory influence the decomposability components. This leads us to the following remark.

Remark 1 If a theory T in a signature 3. can be defined by a system of axioms, which
uses only a part of signature symbols X! C X, then this theory is decomposable. It has the
decomposition in a theory with the signature X' and theories with signatures from Y\X',
defined by sets of tautological sentences.

Therefore, it is sufficient to consider the question of decomposability for the theory with
the lesser signature. This leads to the following definition.

Definition 5 Let us consider a signature . and a theory T in this signature. We call T
reducible, if there exists a subset X' C X of the signature Y. and a system of axioms S for
T, which contains symbols only from Y. Thus, T is reduced to the theory T' in the lesser
signature X' . If any system of axioms of T contains all signature symbols of ¥, then T is
irreducible. Let us call valid all those symbols of 3 that can not be eliminated from any
system of axioms of T .

It is possible to give the definition 6 of a reducible sentence in the same manner. Below
we formulate the proposition that justifies this definition.

Proposition 1 Consider an extension of a signature X' C X and a theory P in the signa-
ture X', Let @ be a sentence of 3. If o follows from P, then there exists a sentence 0 € P,
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such that P+ 0, 0 & . Besides, 0 includes only those symbols from X' that are present
in .

Definition 6 Consider a theory T and a sentence ¢ €T . ¢ is called reducible in the
theory T, if there exists a sentence 0 € T that contains fewer signature symbols, than @
does, and for which 0 & . If there are no such sentences, then we call o irreducible in
the theory T .

In order to define decomposability components, one has, first, to eliminate all invalid sym-
bols from sentences of a theory. It is necessary to prove however, that after having this
done, we will have semantically the same theory as before. In other words, everything that
could be derived before, can be derived after this operation.

Proposition 2 Let T be a theory in a signature Y.. Consider a set of valid symbols X' of
the signature 3: ' C X. Then T is definable by a system of axioms in the signature X' .
Besides, such a system of axioms defines an irredicible theory.

One of the main steps on the way to proving the uniqueness of decomposition is the fol-
lowing variant of the Craig’s interpolation theorem.

Proposition 3 Consider a decomposition of signature = = %1 [[ X2 and two theories
P,Q in the signatures X1, Yo respectively. Consider a sentence p of the signature 3. If
@ follows from the union of the theories P, Q & , then there exist sentences 0 € P and
o€ Q,suchthat P+ 0, QF ¢ and 0, ¢ - p. Moreover, 0 includes only those symbols of
31 that are present in . Correspondingly, ¢ contains only those symbols of ¥4 that are
present in .

Definition 7 Consider a theory T and a sentence p €T . Let us call ¢ decomposable in
the theory T, if there exist sentences 0 €T, €T, such that 0,1 contain symbols only
from ¢ and do not have common signature symbols, neither of them is an equality formula,
and 0,1 = . We call 6 and 1 decomposition components for the sentence p. If there are
no such 6 and 1), then we call v as non-decomposable in the theory T .

Remark 2 Ifa sentence ¢ of a theory T is irreducible, then its decomposition components
0 and 1 are also irreducible.

The following lemma and the corollary are the main auxiliary statements, from which the
uniqueness of decomposition of a theory can be concluded. (S;,7 ) denotes below a the-
ory S; together with equality formulas of theory 7 (those formulas that contain variables
and use no signature symbols).

Lemma 1 For any non-trivial decomposition T=81RS85s in a product of theories in sig-
natures & = X1 [[Xg (X1 # @ # ), every non-decomposable sentence ¢ of T that
contains signature symbols follows only from (S1,T7) or only from (S3,T7).
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If. in addition, ¢ is irreducible, then it is contained either in the theory (S1,T%) of the
signature X1, or in the theory (S, T#) of So. In particular, it contains symbols only from
31 or only from Y.

Corollary 1 Consider a non-trivial decomposition of a theory T =81 ® ... ® S,,. Then
any non-decomposable and irreducible sentence p € T belongs to some theory (S;, T#).

These statements show that it is possible to use any system of non-decomposable and irre-
ducible axioms of a theory to determine its decomposition components. The propositions
1 and 3 explain, how to obtain such system. Due to the paper size limitations, we skip here
several steps before formulation of the main result - Theorem 1. However, those that have
been mentioned here, are sufficient to derive it.

Theorem 1 For any irreducible theory T in a signature ¥ the disjunctive decomposi-
tion of the signature ¥ = %1 [[ ... ][ Xy, which corresponds (up to a rearrangement of
components) to a decomposition T=51Q. .. RS, into non-decomposable theories in sig-
natures ;, © = 1,...,n, is uniquely defined. Let us fix a decomposition of the theory

7.

Then, for an arbitrary decomposition of T into non-decomposable components T =
T1®...07T,, we have n = m and after an appropriate re-enumeration of components,
every S; differs from T ; only by equality formulas from the initial theory T . Therefore,
(81, T#)=(T:, T#).

This theorem states that for any theory 7 its decomposition components are uniquely
defined (clearly, up to equality formulas that use no signature symbols).

It is important to note that though, we have proposed a solution of the decomposability
problem at theoretical level, it is necessary to come to real-world applications of the ob-
tained results. In particular, it is necessary to develop a decomposition algorithm based on
the statements above that could work for some subsets of the first-order logic. This is the
subject of our research presently.

4 Summary

In this paper, we considered declarative knowledge bases represented by sets of first-order
sentences. The focus of the talk will be on logical and model-theoretical frameworks for
dealing with declarative descriptions and, in particular, for managing ontologies. It will
turn out, that in this framework, formal ontology, declarative KB and logical theory are
synonyms. In particular, we will raise the question for discussion, whether it is practical to
assign any understanding to ontology, other than the notion of logical theory. In this scope,
we will argue that most definitions of ontology employ properties that can not be checked
algorithmically (at least) unless the form of ontological statements (formulas) is fixed, like
in the case of thesauri. But the more general way to consider ontology is to view it just as
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a set of sentences in a given logical language. For instance, the language of the first-order
logic, which leads us to the notion of elementary theory. In this context, we will talk about
the operation of incremental data extraction and the decomposability problem. We will
explain the importance of these two notions in the scope of the Semantic Web paradigm
and provide both, theoretical and practical background for their consideration. By the
example of the decomposability problem, we will show, how a question seeming to be
just of a theoretical interest, can have valuable applications in the scope of reasoning over
ontologies. In general, we will try to draw attention to the need of extended fundamental
research in ontological engineering.
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