Optimal Workflow Execution in Grid Environments

Walter Binder, Ion Constantinescu, Boi Faltings, and Nadine Heterd*

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Artificial Intelligence Laboratory
CH-1015 Lausanne, Switzerland

firstname.lastname@epfl.ch

Abstract: This paper describes an original approach to optimally execute compu-
tational tasks in Grid environments. Tasks are represented as workflows that define
interactions between different services. We extend the functional description of
services with non-functional properties, allowing to specify the resource requirements
of services for given inputs. Based on such annotations, we derive a mathematical
model to estimate the execution costs of a workflow. Moreover, we present a
genetic algorithm that optimally distributes the execution of a workflow in a Grid,
supporting the installation of software components on demand, in order to fulfill user
requirements, such as a limit on the total workflow execution time. We implemented
a testt:ed to validate our approach on randomly generated workflows in simulated
Grids.
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1 Introduction

Service-oriented computing, a new approach to software development, enables the con-
struction of applications by integrating well-tested services (components) [PG03]. We
assume that services are annotated with semantic descriptions concerning their function-
ality. Such descriptions may specify the required inputs, generated outputs, preconditions,
and effects of a service. Different formalisms have been proposed for the semantic de-
scription of services, such as OWL-S [OWL] or WSMO [WSM]. In this paper we focus
on OWL-S service descriptions.

Interactions between services can be represented as a workflow, which specifies the order
in which the individual services have to be invoked and how data has to be passed between
these services. While in general workflow specifications may include loops, in this paper
we address only sequential workflows, because most techniques for automated service
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composition focus on the generation of sequential workflows [TKAS02, LD04, CFB04].

A Grid is a collection of machines providing resources (e.g., CPU cycles, memory, net-
work bandwidth, etc.) and services (i.e., installed software components) to execute com-
putationally expensive tasks [BFH03, FBAT03]. A Grid may span different organizations
with heterogeneous infrastructure. In this paper we consider the execution of sequential
workflows in a Grid, optimally exploiting the Grid resources (hardware and software).

Our goal is to optimally deploy application components (i.e., individual services of a work-
flow) on the machines in the Grid. The selection of appropriate machines is based on
their configuration (installed software and available resources), as we try to avoid ex-
pensive re-configurations of machines. The selection of services favors components that
consume less resources for a given input. In order to estimate the resource requirements
of a component for a task, we extend semantic service descriptions with non-functional
properties (resource requirement formulas). These formulas allow to compute the esti-
mated resource requirements in terms of input properties (such as input size) of a task
specification [MMWO04].

The selection of machines and components focuses on user requirements, i.e., on objec-
tives related to the performance of task execution [DDRO4]. E.g., the user may specify
a deadline (an upper bound for the execution time) or require to minimize the execution
time. Our task deployment algorithm ensures such user objectives.

While our formalism to describe the resource requirements of components is flexible and
extensible to allow custom resource definitions, we focus on the following four resource
types in this paper:

e CPU: As a Grid is a hetergeneous environment which may include many different
types of machines, it is essential to define a platform-independent metric for CPU
consumption. The most common metric for CPU consumption is the CPU time mea-
sured in seconds. However, this metric is not platform-independent, since the CPU
time for the same deterministic program with the same input may vary significantly
depending on hardware and operating system. Hence, we assume the ubiquitous
presence of a common virtual execution environment, such as the Java Virtual Ma-
chine [LY99], and measure CPU consumption in terms of virtual machine bytecode
instructions, which is a platform-independent metric [DDHVO03]. For deterministic
programs, measurement results are exactly reproducible, which is particularly useful
for benchmarking and profiling. The use of bytecode instruction counting as CPU
consumption metric was introduced in [BHVO01] and refined in [BH04, HB04]. It
has also been used in Grid environments for monitoring [HBS04].

e Static memory: This resource relates to the code size of a component, i.e., the storage
required for installation. We measure it in MB.

e Dynamic memory: This resource corresponds to the memory requirements of a com-
ponent during execution (loaded code, stack, heap, etc.). We measure it also in MB.

e Network bandwidth: The transmission of data between components on different
machines that are chained together in a workflow consumes a certain amount of
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network bandwidth. We measure the size of messages in MB and the bandwidth of
network links in MB per second.

The main contributions of this paper are (1) an extension of OWL-S [OWL] that allows
defining non-functional properties of components (in particular resource requirements),
(2) a mathematical model to compute the execution costs of a workflow, (3) a genetic
algorithm to optimize workflow execution, and (4) a testbed to simulate Grids and to gen-
erate random workflows, which we used to evaluate our approach.

This paper is structured as follows: In Section 2 we present our system model and use a
concrete example to illustrate how user objectives are expressed and how the Grid man-
ages its resources in order to fulfill the user requirements. Section 3 introduces our for-
malisms and explains how to express non-functional service properties in OWL-S. Sec-
tion 4 provides a mathematical model to estimate the costs of workflow execution in terms
of execution time. Section 5 presents a genetic algorithm to optimize workflow execution.
Section 6 evaluates the performance of the genetic algorithm. Finally, Section 7 concludes
this paper.

2 System Model and Example Scenario

Figure 1 shows the general architecture of our system. The Grid is divided into several
domains, each of them administered by a domain manager. This allows us modeling
disjoint administrative boundaries. Each domain manager is in charge of a number of
machines, called donators, which offer their (idle) computing resources to the Grid.

Each domain manager maintains a number of donators and knows their current configura-
tions, i.e., the locally installed components and the available computing resources (CPU,
memory, network bandwidth, etc.). This information is stored in the donator directory.
Each domain manager also has a scheduler to optimally deploy components on the dona-
tors.

The operator acts as mediator between the user and the Grid environment. Thanks to
the domain manager directory and to the implementation profile directory, the operator is
aware of the Grid structure and of available components. Furthermore, it has reasoning
capabilities and is in charge of optimally distributing the execution of workflows over the
Grid. This is achieved by the workflow builder and the solver.

We distinguish between 3 types of task/workflow description:

e A high-level rask specification defining available inputs and required outputs.

e An abstract workflow that refers to a set of services and defines their interactions
(dataflow).

e A concrete workflow that defines all grounding details (i.e., it specifies which com-
ponents on which machines to use).

278



GRID
task specification
+ Operator

+ Fum,nona]me'le lmplement'\tlonl’rof']e
inputs Dlreclory Dlreclory

m Domam Manager

Builder Direcmry

User @
+ optlmlzauon goals + inputs

- . . + %-/‘
DMi | Domain Manager i ot \
- . cost2
Dij | Donator ij cost3

( DM
C@—C} Abstract workflow
DIl b2 D22 D31

D21

%ﬂ-@ Concrete workflow transposel multiply1
e — — e —
Donator Donator - Donator
Schedul ’ - Scheduler) |

optimization goals

Figure 1: System overview.

Normally, the user sends a high-level task specification to the operator. As shown in Fig-
ure 1, the operator maintains a functional profile directory that contains the semantic de-
scriptions (OWL-S descriptions [OWL]) of all available service functionalities. With the
aid of planning-based service composition techniques, the workflow builder is able to au-
tomatically generate an abstract workflow from a high-level task specification of available
inputs and required outputs. As concrete service composition algorithms are not in the
scope of this paper, we refer to [CFB04] for details. Alternatively, the user may directly
send an (e.g., manually created) abstract workflow to the operator.

As an example of mapping a scientific computation onto the Grid [DBG04], we consider
the following scenario: A user wants to estimate the unknown parameters of a function
using the least squares estimation method, which can be represented as a matrix resolution
problem. As this computation may become computationally hard for large matrices, the
user decides to run it on a Grid.

First, the user maps the least squares estimation formula (X7 X)~! X'y into a task speci-
fication. Next, he transmits his request to the Grid operator (Figure 1 (1)). The request con-
sists of the task specification, some optimization goals, such as a deadline for the results,
and the input data. The operator leverages the workflow builder to generate an abstract
workflow (Figure 1 (2)). The abstract workflow, shown in Figure 2, uses the following
matrix operations: transpose, multiply, and inverse. It takes possible parallelization into
account and specifies the order of the matrix operations.

The operator is in charge of deploying the computation so that the execution will be com-
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Figure 2: Abstract workflow representing the least squares computation.

pleted before the given deadline. Hence, the operator forwards the abstract workflow to
the domain managers (Figure 1 (3)). Each domain manager tries to find a solution meeting
the given deadline by selecting the most efficient components among the advertised ones?
(e.g., consuming the least CPU and memory resources), and the most powerful machines
(in terms of available resources). Each domain manager may install new components only
on donators within its domain. IL.e., while a concrete workflow may exploit any installed
(and advertised) components in the Grid, it may require the installation of new components
only within one domain. This gives domains some autonomy, as the installation of new
components has to be granted by the domain manager, but cannot be forced by external
entities.

Once the operator receives all possible deployment solutions from the domain managers
in the form of concrete workflows (Figure 1 (4)), it chooses the best among them (in
terms of shortest execution time), activates it by triggering component installations in the
appropriate domain (if necessary), and executes the least squares computation.®> Finally,
the results of the execution are transmitted to the user.

A number of requirements emerge from this scenario: The resource requirements of com-
ponents, the donators’ available resources, and the donators’ current configurations have
to be represented. Furthermore, the costs of workflow execution must be defined (in terms
of execution time), and an algorithm has to be developed to find a deployment that meets
the given optimization criteria. These issues are addressed in the following sections.

3 Formalisms

In the following we define the concepts introduced in the previous section more formally.

2 Advertised components are (1) locally installed components, (2) remote components that are installed on
other donators, and (3) components that are not yet installed on any donator but are available for deployment.

3The execution of the selected concrete workflow is controlled by task managers within the donators. The
execution is based on service invocation triggers, an efficient, lightweight mechanism for distributed workflow
execution. The execution of concrete workflows is not in the scope of this paper, we refer to [BCF04].
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3.1 General Concepts

3.1.1 Services and Components.
Our system comprises:

o A set of services F'. Each service is specified by a service description, which covers
only the service functionality (but not any non-functional aspects, such as resource
requirements). F' is related to the functional profile directory in Figure 1.

F={F,F,...,Fn}

e Sets of components. Each component specifies a service implementation, covering
functional and non-functional aspects (i.e., resource requirements). Therefore, for
each service Fj, there are possibly jr, components (implementations of the func-
tionality specified by F}). These components are represented by the set:

Ci ={Cin,Cia,...,Cijp }

The sets of components C; are related to the implementation profile directory in
Figure 1. The resource requirements of each component C;; are defined as follows:

— CPU(C};) represents the CPU requirements of component Cj;. It is speci-
fied by a function of the input properties of the service and measured in a
platform-independent metric, the (approximate) number of required bytecode
instructions. As this metric is closely related to algorithm complexity, a gen-
eral formula of CPU(Cj;) can be de derived from a complexity analysis and
concrete parameters can be estimated by benchmarking C;; on varying inputs.

— MemStat(C;;) represents the code size of component Cj;. It is specified by a
static value and measured in MB.

— MemDyn(C};) represents the dynamic memory allocation. It is specified by a
function of the input properties of the service and measured in MB.

3.1.2 Domain Managers and Donators.

The system has a set of n domain managers:
DM ={DM;,DMs,,...,DM,}
Each domain manager maintains a set D; of j donators
D; ={Di1,Di2,...,Dy;}

and a set L)y, of components that are locally installed on these donators. The available
resources of each donator D;, are defined as follows:*:

4In our testbed the available resources of donators are specified as static values. In a practical setting, these
values change dynamically and are updated by a monitoring infrastructure [HBS04].

281



CPU (D) represents the available CPU resources, measured in bytecode instruc-
tions per second.

MemDyn(D;y,) represents the available dynamic memory, measured in MB.

MemStat(D;y) represents the available disk storage, measured in MB.

e Bandwith(D;y) represents the network bandwidth of donator D, measured in
MB per second.

3.1.3 Set Relations and Service Grounding.

There are several relations between the sets defined above.

In the Grid there are m services, and for each service there is a list of components im-
plementing the service functionality. The set A represents all available components in the
Grid and is defined as follows: .
A=Jc
i=1

The set I contains the components that are deployed in the Grid, i.e., that are installed on
one or more donators. Therefore, I C A. As there are n domain managers, I is defined as
follows:

I=|]JLpu,
i=1

The set A — Lpyy, represents all the components that have not yet been deployed in the
domain of DM;, and the set A — I represents the components that have not yet been
deployed on any donator.

We define a set of service groundings G as tuples g; = (c;;, dj;), expressing that the com-
ponent ¢;; is deployed on donator dj,;:

GCCxD

3.2 Workflow Definitions.

3.2.1 Abstract workflow.
An abstract workflow AW = (S, R, T') is represented as a directed acyclic graph.

e S, the nodes in the graph, represent a set of services that provide all the functionali-
ties used in the abstract workflow.

e R: S — Fisa function from nodes to services. R gives for each node the corre-
sponding functional service profile.
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<c3p, do2>

Figure 3: Concrete workflow representing the least squares computation.

e T, the edges in the graph, is a set of transmission links, defined as tuples (s;, s;) of
nodes in S (1" C S x 5). These links represent the data passed between the services.
A service S; can be invoked only after all incoming links have provided data.

The following definition represents an abstract workflow for the least squares computation
(see Figure 2). The special services START (resp. END) refers to the inputs (resp. outputs):

° S - {51752783784755756787}

o R={(s1,START), (s2, Transpose), (ss3, Multiply), (s4, Multiply),
s5, Inverse), (sg, Multiply), (s7, END) }

(
o I'= { <51>S2>7 <51753>7 <31734>a <52a 84), <52a S3>> <33,S5>7 <S5786>7 <84a36>a
(s6,87) }

3.2.2 Concrete Workflow.

A concrete workflow CW = (S, R, T, G, B) is an extension of an abstract workflow, since
it specifies additionally a set of bindings B defined as tuples (s;, g;) assigning a grounding
gi € G toeachnode s; € S,i.e., B C S x G. The groundings for the START and END
nodes define the source of the initial inputs and the destination of the final outputs. The
same grounding may appear in different bindings.

Figure 3 represents a concrete workflow for the least squares computation (here we do not
show the groundings for the START and END nodes):

e B= { (827 <012, d32>)7 (83, <C31, d13>)7 (84, <C327 d22>),
(557 <0267 d11>)7 (567 <C317 d13>) }
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3.3 Extending the OWL-S Ontology

As the current version of the OWL-S [OWL] ontology does not include any properties
to define the resource requirements of a service, we extended it to support such non-
functional properties.

3.3.1 Adding Implementation Profiles.

Since a distinction must be made between the functionality of a service and the implemen-
tation of this functionality (resource requirements are considered implementation aspects),
we added two classes to the ontology:

e The FunctionalProfile class specifies the service functionality. This class corre-
sponds to the OWL-S Profile [OWL].

e The ImplementationProfile class specifies the resource requirements of a component
that implements the service. Resource requirements are non-functional properties
that are described by the following attributes:

— hasCpuResource represents the CPU requirements of the component, defined
as a function of the input properties.

— hasDynMemResource represents the dynamic memory requirements of the
component, defined as a function of the input properties.

— hasStatMemResource corresponds to the code size, which is a constant.

In the ImplementationProfile each output property is defined as a function of the
input properties. Output properties are important when components are chained
(i.e., when the outputs of a component are passed as inputs to another component),
in order to know the properties of intermediary results.

3.3.2 Defining Resource Requirements.

Resource requirements are defined by functions that may depend on the properties of the
service inputs. The ontology had to be extended in order to accept these resource require-
ment definitions, as shown in Figure 4.

ResourceMetrics are defined by an expression (hasMetricsExpression property) represent-
ing the resource usage function and by a metrics type (hasMetricsType property), which
specifies name and measurement unit of the metrics. For instance, the unit of the CPU
resource is bytecode instructions and the unit of the memory resources is MB.

MetricsExpression is either MetricsLiteral representing a real value, MetricsVariable de-
scribing a variable, or MetricsOperation specifying an arithmetic operation. MetricsOp-
eration has a set of hasOperand properties, describing a metrics expression and therefore
allowing the definition of nested functions.
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3.4 Example

As an example, we show the specification of a component implementing the transposi-
tion operation myTransposeMatrix. Below is the declaration of the inputs, outputs, and
resource requirements:

<MatrixTransposeProfile rdf:ID="myTransposeMatrix”>
<hasInput rdf:resource="#input”/>
<hasOutput rdf:resource="#output”/>
<hasDynMemResource rdf:resource="#dynMemResource” />
<hasCpuResource rdf:resource="#CPUResource”/>
<hasStatMemResource rdf:resource="#statMemResource”/>
<hasPrecondition />
<hasEffect/>

</MatrixTransposeProfile>

<Matrix rdf:ID="input”> <hasRows rdf:resource="#inputRows”/>
<hasColumns rdf:resource="#inputCols”/>

</Matrix>

<Matrix rdf:ID="output”™> <hasRows rdf:resource="#inputCols”/>
<hasColumns rdf:resource="#inputRows”/>

</Matrix>
<MetricsVariable rdf:ID = “inputRows”/>
<MetricsVariable rdf:ID = “inputCols”/>

For the transposition operation, both the input and the output are matrices. In this example,
the relevant aspects of the input are the matrix dimensions, i.e., the number of rows and
columns. These dimensions are represented by two variables inputRows and inputCols.
The relevant aspect of the output are also the matrix dimensions. These properties are
defined as a function of the input properties. For the transposition operation, the number
of output rows equals the number of input columns and the number of output columns
equals the number of input rows.

<ResourceMetrics rdf:ID = "CPUResource”™>
<hasMetricsExpression>
<Add>
<hasOperand> <MetricsLiteral >
<hasLiteralValue >a</hasLiteralValue>
</MetricsLiteral >
</hasOperand>
<hasOperand>
<Mul> <hasOperand> <MetricsLiteral >
<hasLiteralValue >b</hasLiteralValue>
</MetricsLiteral >
</hasOperand>
<hasOperand rdf:resource="#inputRows”/>
<hasOperand rdf:resource="#inputCols”™/>
</Mul>
</hasOperand>
</Add>
</hasMetricsExpression>
<hasMetricsType> <MetricsType>
<hasName>CPU</hasName>
<hasUnit>Bytecode Instruction </hasUnit>
</MetricsType>
</hasMetricsType>
</ResourceMetrics >

CPU and dynamic memory requirements are defined as functions of the input properties.
The example above shows the code for defining the CPU usage of the myTransposeMatrix
component. In this case, the CPU usage is proportional to the product of the input ma-
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Figure 4: Extending the OWL-S ontology.

trix dimensions: CPU(myTransposeMatrix) = a + (b * input Rows * inputCols).
a and b are constants which may be determined by the component developer by bench-
marking myTransposeMatrix with two different inputs and solving 2 simple equations with
two variables. See [BHO5] for details on benchmarking using bytecode instruction count-
ing as metric. Static memory requirements are independent of the input properties and
their metrics expressions are simply defined as a MetricsLiteral representing a real value.

4 Mathematical Model

This section presents a mathematical model to compute a cost function for a given concrete
workflow CTW. Costs may be measured in terms of CPU spent, total execution time, band-
width consumption, memory consumption, etc. While we implemented a large number of
different cost functions, we address only the total execution time in this paper because of
space limitations.

4.1 Cost Measures for Workflow Execution

Considering a concrete workflow, each grounding g; relates to three kinds of costs (repre-
senting the three main stages in the life-cycle of a component):

4.1.1 Activation Cost.
installCost(g;). Any component in a concrete workflow must be activated once, before

its first invocation. This is independent of how many times a component is used in the
concrete workflow. In fact, this could correspond to the installation of local components on
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a given donator, or to the installation of local stubs when remotely accessing a component.
The installCost(g;) function defines the cost of activating the component specified by
the grounding g; as a real value.

4.1.2 Data Transfer Cost.

dataTransCost(t, g;, g;). In order to be able to execute a component, its input param-
eters must be transferred from the donator corresponding to the previous component in
the concrete workflow. The dataTransCost(t, g;, g;) function defines the cost of trans-
ferring the parameters specified in the data-dependency ¢ between the donators specified
in the groundings g; and g; corresponding to the two components involved in the data-
dependency.

4.1.3 Execution Cost.

invoSerCost(g;). After the component has been activated and its input parameters
have been transferred to the current donator, the component can be executed. The
invoSerCost(g;) function defines the execution cost of the component specified by the
grounding g;.

4.2 Computing Costs in Terms of Execution Time

Now we define the cost of a concrete workflow in terms of execution time, taking par-
allelization (i.e., several components may be executed concurrently) into account. This
requires:

e Computing the activation cost, which is equivalent to the installation cost.

e Computing the usage cost, which represents the execution costs of all the compo-
nents and the data transfer costs among all the components in the concrete workflow.

4.2.1 Computing Activation Costs.
Let G sup, be a subset of components from G that are installed on a donator D;; managed

by the domain manager DM;. Since in the domain of DM; we have j donators, we
conclude that we also have j subsets of G. In this case, the installation cost is:
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installCost(CW) = max Z installCost(g;), ..., Z installCost(g;)

\V9i €EG suby Vgi €Gsun
where
0 if ¢;; € Lpu, (c;j is installed locally)
installCost(g;) = 0 or constant if ¢;; € I — Lpyy, (c;5 18 accessed remotely)

MemStat(ci; . ) .
%k% if ¢;; € A — I (¢;5 is not installed)

4.2.2 Computing Usage Costs with Abstract Interpretation.

Abstract interpretation is a theory of sound approximation of the semantics of computer
programs. It can be viewed as a partial execution of a computer program to gain in-
formation about its semantics (e.g., control structure, flow of information, etc.) without
performing all the calculations.

With abstract interpretation we can take parallelization and resource constraints into ac-
count. In our case, the concrete workflow is interpreted over an abstract domain: Com-
ponents are not really invoked and data is not really transferred, but a simulation of the
relevant aspects is done. These aspects are the starting and ending execution time of com-
ponents and the resource allocation of donators.

For each donator in the concrete workflow, an interval list of its activation is kept (this list
is initially empty). For the concrete workflow, the availability time of each data transfer
message is stored.

In each step, a component c¢;; is selected which has all its input messages M =
{m1,...,m,} available. The component c;; has as

e starting time, the maximum of its messages’ arrival times.

starting time = max(arrivalTime(my), . .., arrivalTime(my,))

e ending time, the sum of its starting time and its invocation cost in terms of execution
time.
CPU (Ci j)

di ti = start: t OPIT(d..)
ending time = starting time + CPU (d;1,)

After calculating the starting and ending time of a component, the activation list of the
corresponding donator is examined. We search for the next free interval (where the donator
has not yet been assigned to a task) and register the computation of the component there.
If necessary, the computation is split into several pieces.

Having updated the activation list, we know when the output messages of the component
are available. For each output message, we use the (estimated) message size (remem-
ber that our extension to OWL-S allows defining output properties as functions of input
properties) and the bandwidth of communication links (data transfer costs) to compute the
arrival times at the message destinations.

288



S2 S3 S4 S5 S6
Transpose ~ Multiply ~ Multiply Inverse ~ Multiply

<ci2, d32>[<c31, d13>|< 32, d22>|< 26, d11>|< c31, d13>

Figure 5: Chromosome describing the concrete workflow of Figure 3.

5 Optimization Using Genetic Algorithms

In Section 4 we defined an optimization function in terms of execution time. Now we
must choose an optimization method well adapted to this problem. As we are considering
a large-scale search space, we decided to use a non-deterministic optimization method.
We chose a genetic algorithm [MT98], since it was straightforward to implement; other
optimization techniques would be applicable as well. In order to formalize the concrete
workflow cost optimization problem as a genetic algorithm (GA), we have to define the
population, the individual representation, and the operators of the GA.

5.1 Population and Individual Representation.

In our case, the population is a set of concrete workflows. Each of these concrete work-
flows represents an individual and is described as a chromosome having the nodes of the
concrete workflow as genes (the set S representing functional profiles).

Each of these genes has a specific alphabet or alleles. This alphabet is described by a set of
groundings (the set (G). Each component of the groundings must be included in the set of
components of the function specified by the given node. An example is shown in Figure 5.

5.2 Fitness Function and Termination Condition.

The fitness of an individual is the execution time of the concrete workflow it represents.
The smaller the execution time, the better the individual fits in the environment. The
genetic algorithm terminates when a given deadline is met or when a convergence value is
detected, i.e., when the improvement after the last n steps is smaller than a given delta J.

5.3 Selection Operator.

There are several different types of selection mechanisms [ZK00]. We use the k-way
tournament selection method. The idea of the k-way tournament selection is to hold a
tournament among k randomly picked individuals. The winner of the tournament is the
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individual with the highest fitness, which is inserted into the mating pool. We repeat this
process until we have n (the size of the population) winners.

5.4 Recombination Operator.

The recombination operator is performed on a couple of individuals: The parents’ chromo-
somes are cut at the same random position and their second halves are swapped between
them, thus yielding two new individuals, each containing genes from both parents.

5.5 Mutation Operator.

The mutation operator is performed on an individual and not on a couple as the recombina-
tion operator. Each gene of each individual has a very small probability of modifying the
allele representing this gene (i.e., the grounding). The modification is done by choosing
randomly another grounding in the alphabet corresponding to the given gene.

5.6 Preventing Premature Convergence.

Premature convergence is a serious concern in genetic algorithms [Fog99]. It means that
the population converges towards a local optimum instead of the global optimum. This
occurs when the crossover operator has a high probability; i.e., when diversity is lost. In
short, the ‘wrong’ part of the search space is explored. Therefore, mutation is needed to
increase diversity in the population and to explore other parts of the search space. Two
mechanisms were implemented in order to prevent premature convergence:

The first mechanism is to start the execution of the genetic algorithm with a very high
mutation rate and a low recombination rate in order to explore the search space. Then,
after a certain number of generations, we slowly decrease the mutation rate and increase
the recombination rate in order to direct the search towards the ‘good’ part.

The second implemented technique is to initialize a proportion of the population randomly.
Every ten generations, 10% of the individuals of the new generation are created randomly.

6 Evaluation

In order to evaluate our approach, we implemented a testbed to simulate different Grid en-
vironments. The testbed allows varying many parameters, such as the topology of the grid
(the number of domain managers), the number of donators, the donators’ network band-
width, the donators’ provided resources, as well as the available components and their
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Figure 6: Evaluation results: Installation of components on donators is NOT possible.

respective resource requirements. Moreover, our testbed allows generating random ab-
stract workflows. While we validated our approach in a large number of different settings,
we selected 3 representative experiments for the discussion below.

We launched the GA on large-scale systems with different configurations (in terms of the
number of donators, the number of domain managers, etc.) and compared the results with
a random search strategy, which explores the search space randomly, always preserving
the best solution found so far. We used the following methodology for our evaluation:

e First, the GA was launched until convergence was reached. The result (i.e., the
shortest execution time) is called C' and represents the optimum fitness. In smaller
settings, we used exhaustive search to verify that C' was the global optimum. How-
ever, in large-scale settings an exhaustive search is not viable because of the large
search space.

e Then the GA and the random search algorithm were launched over 300 steps.

— Fya(n) Tepresents the best fitness achieved after n steps using the GA.

— Fl.s(n) represents the best fitness achieved after n steps of random search.

For both search algorithms, we always generated 30 individuals in each step (generation).
For all experiments, we used a configuration with two domain managers, each controlling
50 donators. For each experiment, we randomly configured the properties of each donator
(available resources, connectivity and bandwidth, installed components, etc.).

In order to present the results of our evaluation, we wanted to show both the quality of the
results (fitness) and the speed of convergence (over the number of steps) in a single figure.
Therefore, we represent the results in a graph, were the X-axis corresponds to the number
of steps n and the Y-axis shows the best relative fitness obtained until step n (a value of

291



fitness/optimum

12

= GA search
—Random search

.-

I 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286

# steps

Figure 7: Evaluation results: Installation of components on donators is possible.

1 means that the optimum C' has been reached). We plot two curves over the number of
algorithm steps: One for the GA and one for the random search. I.e., the curves represent

. F . F
the function —25* for the GA, resp. the function —-5*> for the random search.

In Figure 6 and Figure 7 the least squares computation is considered. Figure 6 shows the
results obtained with a configuration where the installation of components on donators is
impossible (i.e., donators do not have enough static memory resources to allow installa-
tion). Thus, the solution can only use locally installed components or remotely accessible
components. Figure 7 shows the results when the installation of components on donators
is possible (i.e., donators have enough resources in terms of static memory). In Figure 7
the GA converges rather quickly compared to Figure 6, where it takes about 60 steps to
find a solution close to the optimum.

Figure 8 shows the result obtained with a randomly generated abstract workflow of 10
nodes (i.e., the connections between the 10 nodes are set randomly). In this kind of ex-
periment, we are interested to see the behavior of the GA and of the random search for
abstract workflows with different complexity. The installation of components on donators
is allowed.

To sum up, in all settings the genetic algorithm converges quickly towards the optimal
solution, whereas the random search algorithm converges much slower and never reaches
the optimum within 300 steps.

7 Conclusion

In this paper we presented a novel, original approach to optimally distribute and execute
workflows in a Grid. Our system takes as inputs a high-level task specification (from which
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Figure 8: Evaluation result with a random abstract workflow composed of 10 nodes.

we derive a workflow defining the functionalities and dependencies of required services),
optimization goals (e.g., a deadline for the completion of the workflow execution), and
input data. Based on these inputs, the system selects the best suited components that
implement the desired functionalities and deploys them optimally across the machines of
the Grid, favoring already installed components and taking CPU consumption, static and
dynamic memory requirements, and network bandwidth into account.

In order to model this optimization problem, we extended the OWL-S ontology with non-
functional properties to describe the resource requirements (in terms of input properties)
of different components. With the aid of these descriptions, we derived a mathematical
model to estimate the overall execution time of a workflow in a particular setting. The
model, which may become rather complex because it also has to take resource conflicts
into account, is evaluated using abstract interpretation. Finally, we leverage genetic algo-
rithms to search for an optimal workflow execution that satisfies the given requirements.
An evaluation of our system using randomly generated workflows in simulated Grids re-
vealed that our optimization algorithm converges quickly towards an optimal solution.
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