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Abstract: The integrity of B-tree structures can become compromised for many
reasons. Since these inconsistencies manifest themselves in unpredictable ways, all
commercial database management systems include mechanisms to verify the integ-
rity and trustworthiness of an individual index and of a set of related indexes, and
all vendors recommend index verification as part of regular database maintenance.
This paper introduces algorithms for B-tree validation, reviews the algorithms’
strengths and weaknesses, and proposes a simple yet effective improvement for key
verification across multiple B-tree levels. The performance is such that B-tree veri-
fication can become part of scans or backups. Our experimental comparisons in-
clude algorithm performance and scalability measured using a shipping product.

1 Introduction

Even with the most carefully implemented and tested database software, database cor-
ruptions can happen at any time. There are many reasons: even shipping software has
defects for which vendors eventually offer “fix packs” or “service packs;” there are soft-
ware defects in operating systems and their device drivers; there is complex hardware and
software in today’s storage systems, e.g., in network-attached storage; and there are envi-
ronmental problems such as excessive vibration or overheating in a storage rack. Each of
these system layers may have its own verification methods for its data and metadata, but
the database management system running on top of them must provide the final verifica-
tion mechanism that detects failures and corruptions. Therefore, all database vendors
provide verification utilities and recommend their use as part of regular maintenance. The
purpose of this paper is to lay foundations of reliable and efficient verification algorithms
and to introduce a superior new algorithm. This algorithm requires little memory yet is so
simple and fast that it even can be integrated into backup and restore operations.
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Figure 1. An incomplete leaf split.
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For example, Figure 1 shows the result of an incomplete execution, an incomplete re-
covery, or an incomplete replication of splitting a leaf node. The cause might be a defect
in the database software, e.g., in the buffer pool management, or in the storage manage-
ment software, e.g., in snapshot or version management. When leaf node b was split and
leaf node ¢ was created, the backward pointer in successor node d incorrectly remained
unchanged. A subsequent (descending) scan of the leaf level will produce a wrong query
result, and subsequent split and merge operations will create further havoc.

Different B-tree inconsistencies result if all nodes but ¢ are saved correctly in the da-
tabase; in that case, a, b, and d point to a page full of garbage. If all nodes but b are saved
correctly, the key range in b would not conform to the separator keys in a. If all nodes but
a are saved correctly, a search for records in node ¢ will not find them.

There are, of course, many failures and corruptions that may be encountered. A B-tree
verification algorithm must be prepared to deal with and identify any of these cases. Our
work focuses on the data structures defined and governed by the database management
system, ignoring the effects and failure modes of the hardware and software underneath
even if the software embedded in the so-called hardware is as large and complex as the
database management system itself, e.g., to provide load management and distribution,
snapshot backup, geo-replication, or redundancy with online recovery [PGK 88].

In many databases, the most fundamental data structure on disk is a variant of the
well-known B-tree index [BM 72]. Therefore, verification of a B-tree’s consistency is the
fundamental operation we consider in this paper. As database indexes are usually in the
form of B*-trees, we focus on those instead of the original B-tree design, and throughout
we mean B*-trees when we mention B-trees. In addition, modern database management
systems define, explicitly or implicitly, further consistency constraints, e.g., between
multiple redundant indexes of a single table or between a materialized view and the base
tables. Verification of those relationships is also considered here.

Allocation structures, metadata, and verification of their consistency are omitted here,
because these differ too much between products to give such a discussion general value.
For the purpose of code reuse alone, including code for consistency checking, B-tree in-
dexes might be used to implement the allocation data structures. In this case, the problem
of booting a consistency check arises: if the allocation information is kept in a B-tree, but
that B-tree is not verified yet, where should database verification start? Within this paper,
we ignore this problem and focus on verification of user tables and their B-tree indexes.

The variety of possible algorithms for B-tree verification is actually surprising. The
main issue is verification of the complex web of pointers and keys, and of the many con-
sistency constraints implied in a B-tree’s structure. At first sight, nothing but a careful
traversal of the tree structure seems safe and complete. If this method were the only pos-
sible method, dropping and re-creating indexes could be more efficient than verification.

We have found, however, that orders-of-magnitude faster algorithms can be em-
ployed. This can be achieved by dividing the problem into sub-problems, by dividing
sub-problems into their contributing facts, and by aggregating such facts and verifying
the result. Moreover, relational database systems have built-in mechanisms for imple-
menting such algorithms, namely the query processor. We have found that both query
optimization and query execution can contribute to the efficiency of B-tree verification.

Algorithms based on these insights have been shipping and used regularly on millions
of production systems for years. Their introduction reduced the times tables had to be
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read-only or offline and thus increased application availability. Recently, however, we
realized that another substantial improvement is still possible. This improvement reduces
the required effort to a level that permits B-tree verification as side effects of scans, e.g.,
during backup and restore operations where B-tree verification would serve to increase
the confidence in backup copies and would thus increase their value.

Therefore, the contributions of this research are (i) the introduction, survey and com-
parison of multiple alternative approaches to verification of structural integrity of entire
B-trees, (ii) a description of a fast verification algorithm invented for SQL Server, (iii)
the description of actual implementation and usage of multiple algorithms in a commer-
cial product, (iv) identification of opportunities for further improvements of these algo-
rithms, (v) the evaluation of the performance and scalability of alternative algorithms in
the context of a shipping product, and (vi) a simpler and faster method for verifying large
multi-level B-trees. Automatic repair is beyond the scope of this paper.

After a review of related work, the two main sections of the paper survey alternative
algorithmic approaches to B-tree verification, including details on opportunities for im-
provement, and report on our performance evaluation. We then offer some recommenda-
tions and our conclusions from this work.

2 Related work

Several researchers have analyzed frequency and causes of disk errors. For example,
Bairavasundaram et al. [BGS 08] found “more than 400,000 instances of checksum mis-
matches over the 41-month period,” affecting almost 1% of the monitored near-line disks.
Even for disk arrays with redundancy, Hafner et al. [HDB 08] observe trends that are “are
increasing the likelihood of undetected disk errors”, which “can cause silent data corrup-
tion that may go completely undetected (until a system or application malfunction) or
may be detected by software in the storage I/O stack.” Our goal is to detect corruptions
that manifest themselves as inconsistent B-tree indexes, e.g., those illustrated in Figure 1.

Any paper on B-trees, their structures and their algorithms, owes a debt to early work
that defined and popularized B-trees [BM 72, C 79]. Their defining characteristics are
uniform root-to-leaf distance, multiple keys and child pointers per interior node, and (in
many implementations) sibling pointers among nodes on the same level [GR 93]. Subse-
quent work has made many important improvements, e.g., compression [BU 77, PP 03].

Unfortunately, verification of physical integrity of databases has not received much
attention in database research. Logical verification, both initial verification of new explic-
itly declared consistency constraints and incremental maintenance of previously declared
constraints, has been researched in the past [RSS 96, S 75]. The last one of the techniques
described below is related to these prior ones, i.e., referential integrity and foreign key
constraints are similar to the relationship between a clustered index and its non-clustered
indexes. The other techniques described in the following sections, however, are not re-
lated to logical database verification because those prior publications did not consider
verification of the tree structure and its many pointers, assuming instead that access
methods are unconditionally reliable.

Mohan described the danger of partial writes due to performance optimizations in the
SCSI standard [M 95]. His focus was on problem prevention using appropriate page

29



modification, page verification after each read operation, logging, log analysis, recovery
logic, etc. The complexity of these techniques, together with the need for ongoing im-
provements in these performance-critical modules, reinforces our belief that complete,
reliable, and efficient verification of B-tree structures is a required defensive measure.

Kispert investigated index verification techniques in the 1980s [K 85], with a focus
on local verification as a side effect of ordinary B-tree accesses during query and update
processing. For example, page format and contents can be verified before interpreting a
database page recently fetched from disk. Page verification may include its relationship
to its parent page. Parent and child must belong to successive levels of the same B-tree,
and the key values in the child must belong into the key interval defined by the parent.
The parent page usually also contains information about a node’s neighbors that can be
compared to the sibling pointers in a child node during a root-to-leaf B-tree search.

Our techniques are compatible with and complementary to these prior verification
techniques. In fact, we present an extension to Kuspert’s techniques. Our overall goal is
different, however, as our techniques permit complete assurance for an entire B-tree or
even all B-tree indexes belonging to a table, view, database, or backup.

Prior techniques used in Siemens software reduced verification of B-tree consistency
to set comparisons, e.g., the set of B-tree nodes, the set of parent-child pointers, and the
sets of left and right sibling pointers [W 81, summarized in K 85]. Expensive set opera-
tions were replaced by checksums. Set comparisons are also the conceptual basis of our
methods based on aggregation and bitmaps. Our algorithms differ from the earlier ones in
two ways, however. First, our algorithms permit gathering much less data in the second
pass needed after the first pass has found that a problem exists. Second, our algorithms
verify not only the pointer structure but also the ordering relationships of keys among
sibling nodes and among ancestor and descendent nodes. Key verification cannot be
added to the Siemens algorithms because checksums support only equality comparisons
whereas key comparisons also require “less than” comparisons.

Some of the discussion below proposes changes to the traditional page layout for B-
trees. Optimization of page layouts, in particular with respect to CPU caches, has been
researched in multiple efforts during the last decade. However, these efforts have been
focused on CPU caches rather than on the B-tree structure. Prior research has suggested
the same change in page layout as is proposed below, but failed to appreciate its impor-
tance for B-tree verification despite mentioning the subject [G 04].

SQL Server is used as reference implementation in this paper. Any other product
would serve just as well, probably with similar issues, problems, insights, and results.
Like other database products, SQL Server stores variable-length records in B-trees with
fixed-length nodes or pages. It uses pages of 8 KB, with special techniques for records
exceeding this size. An indirection vector within each page indicates the location of re-
cords using byte offsets. This indirection vector grows from the high end of the page such
that the records may grow from the low end.

Another design decision in SQL Server B-tree pages is that all records in an interior
node have the same layout including both a key and a pointer, i.e., the number of keys in
an interior node equals the number of pointers. When an interior node is split, entire re-
cords are moved from the old node to the new node, such that the new right node contains
not only separator keys but also the low boundary key. While this design is common
[GR 93], it is not ubiquitous. In SQL Server, it is exploited in a way described later.
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Finally, each table may have one clustered index and multiple non-clustered B-tree
indexes. The clustered index serves as the primary, non-redundant data store, whereas the
non-clustered indexes reference rows in the clustered index physically (using page num-
ber and slot number) or logically (using a search key in the clustered index) — SQL Server
switched from the former to the latter design choice in release 7.

SQL Server does not employ a technique called B™-trees [LY 81]. For high concur-
rency while splitting nodes, these trees permit side pointers to new nodes that are not yet
referenced in the parent node, with repair at the earliest opportunity. Search is directed to
the node at hand or its right neighbor using a separator key associated with the side
pointer. This is the same key value eventually posted as separator key in the parent node.
Verification of B™-trees is not covered explicitly in this paper, but the algorithms can be
adapted with moderate effort and complexity. It is interesting to note, however, that both
a low boundary key within each node and a high boundary key within each node are al-
ready common or have already been proposed elsewhere. They will be exploited in some
of the verification algorithms to be discussed.

3 Verification algorithms

In the algorithms described here, we assume that there are no concurrent transactions
updating the indexes and tables being checked. This assumption is true if the verification
operation holds a table-level shared lock that covers the metadata, all indexes, etc., or if
the verification operation is isolated from concurrent activity by other means, e.g., by
copy-on-write semantics implemented within the database or a lower software layer.

We further assume that complete verification is required. All following algorithms are
able to verify all constraints in a B-tree index such that successful completion guarantees
complete consistency. A database vendor is free to choose among these algorithms based
on the desired performance, scalability, engineering effort, etc.

B-tree verification can be divided into multiple aspects. First, each individual page
must be consistent, and the first section below describes current and possible techniques
that apply to each individual B-tree node. Second, the network of interrelated B-tree
nodes must be verified, including child pointers and neighbor pointers as well as key
ranges and separator keys. Third, if multiple B-trees store a relational table, these must be
verified against each other. For example, a table’s clustered and non-clustered indexes
must contain the same count of valid records in order to represent the same set of logical
rows. Finally, the relationship among tables must be verified, e.g., explicitly declared
foreign key constraints, as well as the relationship between tables and materialized and
indexed views. The following sections review appropriate algorithms for these problems.

Verification algorithms can produce various forms of output, from a binary decision
whether or not a B-tree is currently consistent all the way to a specific identification of
each individual problem. Between those extremes fall algorithms that describe the type or
approximate location of existing problems. If corruptions are fairly frequent even for
small data volumes, specific information is worthwhile even if it is the most expensive to
obtain. On the other hand, if corruptions are very rare and a simple binary decision is
least expensive to obtain, that type of algorithm has the greatest value, assuming, of
course, that identification of specific problems is possible if a corruption exists. The in-
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termediate algorithms trade off performance against output information, such that the
output information is less specific but finding the actual corruption, should one be found
to exist, is less expensive than the naive algorithm.

In the following sections, we point out the verification algorithms’ most salient as-
pects, their advantages and disadvantages, their usage of the algorithm in SQL Server,
and opportunities for improvements. Discussions of advantages and disadvantages as
well as of future opportunities apply to any database management system relying on B-
tree indexes. SQL Server is used to provide examples of each algorithm’s usage and his-
tory rather than convey a limitation to a specific product or release.

3.1 In-page verification

Verification of information within a single B-tree node is fairly straightforward. It is
described here in some detail for the sake of completeness. Specific systems and their
data structures design require appropriate modifications.

It should start with a physical test to protect against partial or “torn” write or read op-
erations [M 95], i.e., cases in which a B-tree node (e.g., 8 KB) requires multiple disk sec-
tors (e.g., of 512 B) and only some of them are written or read due to a problem in elec-
trical power, vibration, etc. Using a checksum operation of all words in the page or of
only a select few ones (say every 512" byte) gives reasonable assurance that the in-
memory image read from disk and the one prior to the last write are indeed equal.

Opportunities are plentiful to go beyond the basic algorithm described above. First,
torn-page detection can be made sufficiently fast that it is worthwhile to integrate it into
all read operations in the database management system. The main expense of torn-page
detection is the number of misses in the CPU cache, but even those may be worthwhile if
the I/O hardware is feared not to be very reliable. Even further verification steps could be
integrated into the I/O operations and might be worthwhile in some systems.

In addition to verification, the same database utility could add general maintenance
tasks within each page. If so, database or index verification improves not only confidence
in the system’s correctness but also performance of subsequent operations. Maintenance
tasks can be deeply integrated in the verification task or they can be scheduled to follow
the verification tasks, focusing on opportunities identified by the verification utility.

3.2 Index navigation

Having explored in-page verification, we now review alternative algorithmic ap-
proaches to verification of a B-tree’s structure. For each algorithmic approach, we first
focus on verification of a single B-tree and then consider matching multiple B-trees, e.g.,
a clustered index and its non-clustered indexes. Verification of a B-tree’s structure covers
the network of pointers among B-tree nodes as well as the ordering of key values among
sibling nodes and among parent and child nodes. In database systems using a different
variant of B-trees, the following algorithms require adaptation. For example, we assume
that leaf nodes as well as interior nodes point to their immediate neighbors by means of
page identifiers, with no pointers at the left and right edges of the B-tree. Verification of
clustered and non-clustered indexes requires precise one-to-one matches of their records.
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The first approach is naive navigation of the index’s structure, in particular of the
child pointers and the neighbor pointers. In an ordered B-tree index, a breadth-first tra-
versal is possible but probably not ideal. A depth-first traversal sweeps from the lowest to
the highest search key, matching forward and backward pointers as well as key ranges at
all B-tree levels. If the B-tree structure is exploited for deep read-ahead for a fast index-
order scan, the resulting traversal is really a hybrid of breadth-first and depth-first scans.
Of course, a parent node must be verified before its contents may be employed for read-
ahead or any other traversal.

The progression through the B-tree’s key range is important not only for consistency
but also to prevent infinite loops, e.g., among leaf pages if the linkage information is cor-
rupted in an unfortunate way. Massive sequences of duplicate keys in non-unique indexes
could foil this safety, but both clustered and non-clustered indexes actually contain only
unique entries, if necessary by use of artificial “uniquifier” fields in clustered indexes or
by inclusion of the clustered index’s search key in non-clustered indexes and their sort
order. Such uniqueness is required, for example, for accurate deletion of B-tree entries.

Performance of index navigation will be linear with the number of pages allocated
for the B-tree, with very modest demands on the buffer pool. Only single-page read op-
erations can be employed if the “next leaf” pointer is used to scan through the leaf pages,
whereas appropriate use of the parent nodes enables large, multi-page read operations
with the attendant efficiency improvement. This efficiency improvement can be realized
only if the B-tree’s layout within the database is not fragmented due to bad algorithms
during index creation or due to many insertions and page splits without subsequent B-tree
defragmentation. In addition to the large read operations, parent nodes also enable multi-
ple asynchronous read operations, which are helpful in a striped storage organization.

Multiple indexes for a table, say a clustered index and a few non-clustered indexes,
must first be verified for internal consistency and then entries in each non-clustered index
must be matched against the clustered index. Obviously, the number of records must be
the same in each index; in addition, these records must actually match one-to-one. More-
over, an index’s tree structure must be verified before the verification algorithm should
attempt a key search in the index.

Compared to alternative algorithms, the main advantage of this algorithm is its
simplicity and code reuse. Using the same code that ordinary database operations use for
index access ensures that the code is tested thoroughly. Given that the main purpose of
index verification is certainty that the database is correct, and given that index verifica-
tion defends against many errors that include software defects in the database manage-
ment system, the choice of this algorithm is a tradeoff strictly for correctness and de-
pendability. Other advantages include very moderate demands on the buffer pool as well
as notification of the error very quickly after the B-tree node containing the error is read.

On the other hand, this algorithm suffers from poor I/O performance including many
repeated read operations for each page; thus, its overall performance and scalability are
poor unless the entire table fits into the available buffer pool. In other words, the algo-
rithm is still attractive for in-memory databases including caches on mid-tier or client
machines, even if a small fraction of the data might have spilled to disk.

SQL Server used to depend on a variant of this algorithm for index verification. The
original design target in the mid 1980s had been 16-bit machines, so small memory re-
quirements were very important. The algorithm is still in use today, but only after the
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current algorithm for matching non-clustered indexes against the clustered index has
found the existence of an error but not its precise location, as described later.

Opportunities exist to improve the above basic approach should that be desired. For
example, multiple indexes can be verified independently and thus concurrently. Depend-
ing on relative CPU and I/O bandwidth, this can speed up the tree verification phase by a
small factor, assuming that the buffer hit rate is not materially affected by this concur-
rency. During the matching phase, read-ahead in the non-clustered index provides a small
performance advantage. In the clustered index, B-tree searches can employ asynchronous
prefetch by pursuing multiple searches concurrently. On a machine with more disk arms
than execution threads, this can improve performance of the match phase also by a small
factor. Finally, the matching operation between clustered and non-clustered indexes is
rather similar to join operations. The simplest algorithm employs essentially index nested
loops join; alternative join algorithms include merge join and hash join.

3.3 Aggregation of facts

An entirely different approach is needed in order to support terabyte databases. The
following method gathers the same facts and verifies the same consistency constraints but
separates the verification from the read operations. In other words, as data pages are read
and information is extracted, it is not verified immediately. Instead, facts are extracted
and streamed into a matching algorithm, e.g., “a leaf node on disk page 5 points to a suc-
cessor leaf node on disk page 92.” When a matching fact is found, e.g., “a leaf node on
disk page 92 points to a predecessor leaf node on disk page 5,” verification for these two
facts is successful. At the end of the entire matching operation, the B-tree is consistent if
and only if all facts have been matched.

While this approach might seem awkward at first, it offers several advantages. The
most significant advantage is that B-tree pages are read only once rather than many times
as in the index navigation method above. The I/O reduction may exceed two orders of
magnitude. Moreover, B-tree pages may be read in any order and disk-order scans are
acceptable. Depending on the fragmentation status of the B-tree, large read operations
may contribute another order of magnitude to the speed. The usual optimizations apply
just as in ordinary query execution, including asynchronous read-ahead, striping, etc.

The crucial component of this approach is in the selection and representation of facts
extracted from B-tree pages and matched in the verification step. For the chain of
neighbors, the fact “Page x follows page y” is extracted from both pages x and y. For the
parent-child relationship, “Parent x points to child y for key range [a, b)” is extracted
from parents and children. These matches also verify the level of the two pages (leaf
pages are level 0) and permit the appropriate flexibility in matching separator keys in the
parent and actual keys in the child. For the root page, one special fact is generated to pro-
vide an artificial parent; alternatively, the appropriate catalog entry and its pointer to the
B-tree’s root might provide this fact.

For example, consider the B-tree in Figure 2 with root page a and two leaves b and c.
Shaded areas represent records and their keys; two keys are different (equal) if their shad-
ing is different (equal). Eight facts will be extracted from the B-tree nodes in Figure 2:
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Figure 2. Root and two leaves.

From page b, the fact that b is a leaf page, together with its actual key range

From page b and its successor pointer, the fact that ¢ follows b

From page c, the fact that c is a leaf page, together with is actual key range

From page c and its predecessor pointer, the fact that ¢ follows b — this matches with

fact 2 above

5. From page a, the fact that b is a leaf page, together with its permissible key range,
which is open at the low end — this matches with fact 1 above

6. From page a, the fact that ¢ is a leaf page, together with its permissible key range,
which is open at the high end — this matches with fact 3 above

7. From page a, the fact that a is a level-1 node, together with its actual key range (a
singleton value)

8. An artificial fact to match fact 7 — this fact could also be derived from the catalogs

el

With no sibling pointers along the left and right edge of the B-tree, no facts are gener-
ated there. The key ranges include information about open and closed ranges, as appro-
priate. Facts verifying sibling pointers could be augmented with key information, ena-
bling the aggregation to verify that indeed all keys in the predecessor are lower than those
in the successor. However, this relationship is already verified transitively via the separa-
tor key in the parent. In other words, no additional information or confidence is gained by
comparing the two leaf records (shaded diagonally in Figure 2) with each other in addi-
tion to comparing each of them with the separator key in the root (shaded horizontally).

Cousin nodes in a B-tree with multiple levels are neighboring nodes with no shared
parent but instead a shared grandparent or even higher ancestor. Cousin nodes gives rise
to what we call the “cousin problem,” illustrated in Figure 3. Verification of keys and
pointers among cousin nodes does not have an immediate or obvious solution. Nonethe-
less, two alternative solutions with different performance characteristics are discussed
below, one employed today and a novel one that is both simpler and faster.

The essence of this problem as shown in Figure 3 is that the key separating leaves d
and e is not in a shared parent node but in a higher ancestor node, in this case in root a.
The potential problem is that there is no easy way to verify that all keys in page d are
indeed smaller than the separator key in page a and that all keys in page e are indeed lar-
ger than the separator key in page a. Correct key relationships between neighbors (b-c
and d-e) and between parents and children (a-b, a-c, b-d, c-¢) do not guarantee correct
key relationships across skipped levels (a-d, a-e). Two alternative solutions for the cousin
problem will be discussed shortly.
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Figure 3. Cousin nodes.

Performance of verification by fact aggregation is proportional to the number of
facts derived from a B-tree and thus to the number of pointers or relationships in the B-
tree. Each node has a parent, and each node (or only each leaf) has a sibling, with excep-
tions for the root and for nodes along the left and right edge of the B-tree. Thus, the num-
ber of facts is about four times the number of nodes or pages in the B-tree.

Extracting these facts from data pages represents a substantial data reduction. For ex-
ample, if each fact requires 20-40 bytes of space, 4 facts per B-tree node require 80-160
bytes. Thus, for data pages of 8 KB, the data required for verification of page linkages in
a B-tree amounts to 1-2% of the data space.

The data volume of the facts also depends on the method employed to group the indi-
vidual facts derived from individual pages. Perhaps the most obvious method groups
facts by type and the pair of page numbers. For example, in Figure 2, facts 2 and 4 are of
the sibling type and may be grouped on the pair (b, ¢). Similarly, facts 1 and 5 are of the
parent-child type and may be grouped on the pair (a, b). This method permits very fine
partitioning of all facts as it produces multiple distinct fact records from each page.

An alternative method defines each fact as primarily about one page, not about a pair
of pages, and groups facts by this primary page only. For example, in a parent-child rela-
tionship, the child may be defined as the primary page, such that facts 2 and 4 above are
both considered facts about page c. Similarly, the right sibling in a sibling relationship
may be defined as the primary page. In Figure 2, facts 3 and 6 would be considered facts
about page c. This technique saves memory by creating fewer facts records. For example,
when inspecting page c, facts 3 and 4 above generate only a single aggregation record
rather than two. The matching logic must require two matching facts for such a combined
fact. Given that most pages in a B-tree are both another node’s child and another node’s
right sibling, this technique immediately reduces the data volume for the aggregation
operation, e.g., the size of the hash table for hash aggregation.

For the matching step, all algorithms for “group by’ and “distinct” queries can be ap-
plied, including sort- and hash-based algorithms [G 93], as the essence of matching is to
group and combine all detail facts about each page. The complexity of the entire proce-
dure is O (N log N), i.e., the same as sorting the fact data.
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Compared to alternative algorithms, this approach are that it scales reasonably well
yet produces precise error messages. Other advantages include sharing code with query
execution, in particular code for disk-order scans, sort- and hash-based aggregation, pipe-
lining, parallelism, and memory management.

SQL Server, starting with release 7, verifies the structural integrity of B-trees using a
version of this approach with dynamic generation of SQL syntax and using language ex-
tensions reserved for such internal queries.

The product also employs some optimizations in the algorithm’s implementation, and
the information laid out in the explanation of Figure 3 is aggregated using the fewest pos-
sible individual fact records. For example, information about both the relationships c-e
and d-e in Figure 3 is considered information about node ¢ and aggregated as such.

In combination with the design choice to keep the same number of keys and pointers
in each interior node, this optimization also permits solving the cousin problem. Recall
that, in a split of an interior node, the new right node retains the low key; in Figure 3,
node c contains a copy of the separator key in node a. The cousin problem is solved by
aggregating both the low key of node ¢ and the high key of node d into the information
about node e, i.e., by ensuring the correct order between nodes ¢ and d. Verification of
“second cousins” (also third, etc.) in multi-level B-trees is possible because separators
keys are copied during node splits at any level in the B-tree.

If multiple SQL Server indexes are verified in a single pass, their allocation informa-
tion is aggregated in a single disk-order scan. The facts retained from the allocation in-
formation include which page belongs to which B-tree, and verification of a page’s in-
formation about the B-tree it belongs to is part of the matching process.

Opportunities for improvement are many. For example, the sibling information can
be augmented with information about space utilization within pages. If two neighboring
pages are found to be nearly empty, an opportunity for merging and thus space reclama-
tion exists. In the opposite case, two pages that are nearly full can be split into three
pages with more standard space utilization, and two neighboring pages with a large dif-
ference in space utilization may benefit from some movement and load balancing.

Facts can be eliminated as soon as all matching facts are found. In a disk-order scan,
success in early aggregation indicates a high quality of clustering, whereas poor success
in early aggregation indicates a need for defragmentation for faster index-order scans
such as range queries. The opportunity is to focus defragmentation on specifically those
pages where it can achieve the largest difference for scan performance.

Fence keys are a technique that can help with the cousin problem illustrated in Figure
3, even if they were originally motivated by write-optimized B-trees [G 04]. The essential
difference to traditional B-tree designs is that page splits not only post a separator key to
the parent page but also retain copies of this separator key as high and low “fence keys”
in the two post-split sibling pages. Note that separators and thus fence keys can be very
short due to prefix and suffix truncation [BU 77]. These fence keys take the role of sib-
ling pointers, replacing the traditional page identifiers with search keys.

Figure 4 illustrates the concept of fence keys, and how they replace the sibling point-
ers of Figure 3. As before, areas with equal shading indicate equal key values. The focus
of the discussion is on the one key value with five copies shaded horizontally. Pages d
and e are cousins because they belong to the same B-tree level and share a fence key
value but not a parent. In order to navigate from page d to its successor, a search from the
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root page is required. However, such navigation steps will rarely be required because the
fence keys are lockable resources; thus, key range locking never needs to navigate to a
sibling leaf in search of a lockable key value. Large scans, on the other hand, need to
employ parent and grandparent nodes in order to achieve deep, many-page read-ahead.
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Figure 4. Fence keys.

The important benefit here is that verification is simplified and the cousin problem
can readily be solved, including “second cousins”, “third cousins”, etc. in B-trees with
additional levels. In Figure 4, the following four pairs of facts can be derived about the

key marked by horizontal shading, each pair derived independently from two pages.

1. From page a, the fact that b is a level-1 page, and its high fence key

2. From page a, the fact that c is a level-1 page, and its low fence key

3. From page b, the fact that b is a level-1 page, and its high fence key — this matches
with fact 1 above

4. From page b, the fact that d is a leaf page, and its high fence key

5. From page c, the fact that c is a level-1 page, and its low fence key — this matches
with fact 2 above

6. From page c, the fact that ¢ is a leaf page, and its low fence key

7. From page d, the fact that d is a leaf page, and its high fence key — this matches with
fact 4 above

8. From page e, the fact that e is a leaf page, and its low fence key — this matches with
fact 6 above

The separator key from root a is replicated along the seam of neighboring nodes all
the way to the leaf level. Equality and consistency are checked along the entire seam and,
by transitivity, across the seam. Thus, fence keys also solve the problem of second and
third cousins etc. in B-trees with additional levels.

Beyond solving the cousin problem, i.e., enabling verification of neighbors that do not
share a parent, the list above requires only equality comparisons between page identifiers,
keys, and level information derived from different pages. In contrast, the verification in
Figure 3 requires “less than” comparisons, as does the solution employed in SQL Server.
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Complete reliance on equality comparisons enables the next and most efficient algo-
rithmic approach to B-tree verification, discussed shortly.

Finally, the list above indicates that only a single record format and aggregation op-
eration is required to capture the facts required for B-tree verification. This record format
includes page identifier, B-tree level, a key value, and an indication whether the key
value is a low fence key or a high fence key. Thus, fence keys simplify B-tree verification
not only on a conceptual level but also on this detailed implementation level.

Fence keys also extend the local online verification techniques described by Kiispert
[K 85]. In traditional systems, neighbor pointers can be verified during a root-to-leaf
navigation only for siblings but not for cousins, because the verification of a leaf’s cousin
pointer would require an I/O operation to fetch the cousin’s parent node (also its grand-
parent node for a second cousin, etc.). Thus, Kiispert’s technique cannot verify all cor-
rectness constraints in a B-tree, no matter how many search operations perform verifica-
tion. Fence keys, on the other hand, are equal along entire B-tree seams, from leaf level to
the ancestor node where the key value serves as separator key. A fence key value can be
exploited for online verification at each level in a B-tree, and an ordinary root-to-leaf B-
tree descent during query and update processing can verify not only siblings with a
shared parent but also cousins, second cousins, etc. Two search operations for keys in
neighboring leaves verify all B-tree constraints, even for cousin leaves, and search opera-
tions touching all leaf nodes verify all correctness constraints in the entire B-tree.

3.4 Bitvector filtering

In addition to these advantages of fence keys over traditional neighbor pointers, fence
keys and the complete reliance on equality comparisons during B-tree verification enable
a further simplification that reduces the complexity of the entire operation to a single
scan. The complexity of this new method has no logarithmic component. Moreover,
memory consumption is very moderate and can be fixed independently of the data size.

The basic idea of this approach is quite simple, and readily applies to the pairs of facts
derived from Figure 4. Instead of precisely aggregating facts, this algorithmic approach
employs a bitmap to verify that facts derived from the on-disk data indeed match up cor-
rectly. For each B-tree node and each child pointer in the on-disk data structures, the
combination of index identifier, page identifier, B-tree level, low and high fence keys is
hashed to a bit position and the bit value currently in that position is reversed. At the end,
the entire bitmap should be back in its original state. If it is not, the scanned on-disk data
contains an error or corruption. The precise type and location of that error are not known,
however. In that sense, it is the first algorithm in this survey that truly only verifies the
correctness rather than pinpoints the error or corruption.

There are multiple assumptions underlying this approach. First, on-disk corruptions
must be rare; otherwise, this approach is not promising. Second, double-errors also must
be rare, and the probability of errors hidden due to hash collisions of double errors must
be negligible. Third, it must be more important to speed up those verification runs that
find nothing amiss than to ensure that corruptions are pinpointed in the first attempt.
Fourth, facts must match in even numbers, typically pairs. Fifth, hashing key values to bit
positions supports only equality predicates, not range predicates.
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If an on-disk corruption is found to exist, a second pass must find it before it can be
repaired. This pass needs to read the same data again, but it only needs to investigate
those facts that map to bit positions in the bitmap indicating a failed match. This investi-
gation may employ either of the prior algorithms, i.e., either index navigation starting
from each fact that maps to a non-matching bit position or an aggregation of all facts that
match to such bit positions.

Compared to other algorithms, the advantage of using bitmaps instead of aggrega-
tion is higher performance with less memory, because neither sorting nor a hash table is
required. Moreover, the entire process completes in a single scan of the data pages. The
main disadvantages are twofold. First, it only works for equality predicates, not range
predicates. Thus, it can be applied to B-trees with fence keys but not to traditional B-trees
that require “less than” comparisons during verification. Second, the method does not
produce precise error information. If an error is found to exist, a second pass over the
data must find the precise error and its location. Minor disadvantages are that facts have
to match up in even numbers and that there is a theoretical possibility, although with very
low probability, of errors hidden due to hash collisions.

SQL Server employs bitmaps for matching non-clustered indexes against clustered
indexes. Bit vector filtering is faster with much less memory than aggregation for the
same problem. A typical size for the bit vector filter is 32 KB or ¥4 M bits. If an error is
found, index navigation is used to isolate the fault. Bit vector filtering is not used for veri-
fication of B-tree structures, because SQL Server does not employ fence keys in B-tree
nodes and leaves. It is not employed for verification of sibling pointers or child pointers
because those facts are verified together with the appropriate key relationships.

Opportunities exist for further improvement. For example, a bitmap might not be
necessary. Instead, a single integer checksum might suffice. On the other hand, the im-
provement in performance and scalability due to a checksum rather than a bitmap might
not be worth the increased probability of failure to detect a corruption and the increased
search effort if an error is found to exist.

Multiple bitmaps permit isolating the type of error, e.g., parent-child relationships
versus sibling relationships. Separate bitmaps also permit isolating the location of the
corruption, e.g., a bitmap for each B-tree.

The most important opportunities, however, might be in the algorithm’s usage rather
than in the algorithm itself. Because of its single-scan behavior and its low cost, the algo-
rithm can be integrated into backup and restore operations, database mirroring, and simi-
lar database utilities that scan or copy entire tables or even entire databases. Verification
of back-up data, both while creating a backup and while restoring it, increase users’ con-
fidence in the backup and thus the value of the backup data. Today’s standard method is
to run a verification step prior to a backup. Integration of verification and backup into a
single scan cuts the entire operation’s elapsed time in half.

3.5 Query evaluation

The final algorithmic approach relies even more on the database system’s query proc-
essing engine than the prior ones. The basic idea in this approach is to formulate a query
to find violations and to report the query output as database corruptions in need of repair.
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This approach is also employed in many data definition statements, e.g., when a new in-
tegrity constraint is explicitly defined by a database administrator.

This approach to database verification is most appropriate when verification of the
on-disk data structures requires traditional query operations, e.g., when comparing a ma-
terialized and indexed view with its base tables, when deriving a computed column using
arithmetic and functions, and when extracting index keys from user-defined types.

Compared to the other algorithmic approaches for index verification, this algo-
rithmic approach to database verification can evaluate complex expressions. It reuses
existing code including query optimization and parallel query execution. Its main disad-
vantage is its dependency on a large volume of complex code. In addition, unless the
query processing implementation supports optimization and execution of multiple queries
together, multiple scans of the same data might be needed. Finally, some query optimiz-
ers suffer from somewhat unpredictable plan choices and thus unpredictable perform-
ance, which may be considered particularly undesirable for utilities that take entire tables
or even an entire database offline.

SQL Server relies on this approach for “not null” constraints and for “check” con-
straints, exploiting indexes if possible. It also employs this approach for comparing mate-
rialized views with query results, and for indexes on user-defined types. The final verifi-
cation step uses query logic, not bitmaps.

Opportunities for improvement remain, of course. For example, the same code
should be employed during verification of data definition statements and during verifica-
tion on on-disk database contents, even if these two functions have traditionally been
implemented by different teams within a large database development team. A second
opportunity is that verification of an entire database and all its structures is a complete,
well-structured workload that can be planned as a whole, including temporary material-
ized and indexed views that can be shared for multiple verification steps.

4 Performance evaluation

In order to assess performance and scalability of each algorithm, we ran a number of
tests using the algorithms implemented in SQL Server 2005. Figure 6 shows the perform-
ance of various index verification tests relative to the scan performance. The data are the
“orders” and “line items” tables in a TPC-H database with 10 GB of data plus indexes.
The test hardware is a workstation with a 3 GHz dual-core Intel CPU, 2 GB RAM, and a
single SATA disk drive. Each test starts with a cold I/O buffer. The tables in this test,
orders and line items, each had a clustered index on a date column plus a non-clustered
index on the primary key and on each foreign key. Each test includes a variant with paral-
lelism disable and enabled. Each test is shown as a set of 4 bars.

The 1* set of bars in Figure 6 (marked “clustered index scan”) shows the performance
of “select count (*)” queries, which measure primarily the scan performance of the /O
hardware. Using query optimization hints, we forced a disk-order scan of the entire clus-
tered index. By definition, each bar shows 100%, because we use this query to show the
relative performance of more complex operations. Proportional to the data volumes, the
actual execution times for operations against the “line item” table are about four times
longer than those against the “orders” table.

41



300.00% 5
~
©

B ORDERS (Serial) S
[JORDERS (Parallel) §

250.00% W LINEITEM (Serial) &

W LINEITEM (Parallel) =

200.00%

150.00%

9% of Scan Performance

100.00% -

50.00% -

0.00% -
Clustered Index  Clustered index Clustered index  All indexes, in-  All indexes, full  All indexes, full
Scan only, in-page  only, full checks page checks only checks, no NC checks
checks only index hash

Test Description
Figure 6. Algorithm performance.

The 2™ set of bars in Figure 6 (marked “clustered index only, in-page checks only™)
illustrates the overhead of in-page consistency verification. If B-tree verification is lim-
ited to in-page checks, the CPU can readily keep up with the I/O hardware. Thus, the
total execution time for in-page-only verification is practically equal to that of the “select
count (*)” query in all 4 cases. Thus, the in-page checks outlined in Section 3.1 can be
achieved with acceptable effort. This argues for performing such checks not only during
offline verification but also online during normal query and update processing, as already
proposed by Kiispert [K 85] and Mohan [M 95].

The 3™ set of bars in Figure 6 (marked “clustered index only, full checks”) illustrates
the cost of full structural verification of a B-tree. For verification of all aspects of the
clustered index B-tree fact aggregation as described in Section 3.3 is employed and adds
to the execution times. Due to efficient fact extraction and aggregation, this operation can
keep up with a disk-order scan, at least for the “orders” table.

The performance for the “orders” table is almost equal to the “select count (*)” query,
whereas the performance for the “line items” table is not. The reason is the difference in
the table sizes. While the facts extracted from the “orders” table can be sorted in the
server’s allocated memory, the “line items” table is four times larger and sorting the ex-
tracted facts requires I/0 to temporary run files. Without sufficient memory, even moder-
ate sizes of tables and indexes incur the penalty of I/O to temporary files.
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As this example illustrates, the performance and scalability of sort operations domi-
nates the complexity, performance, and scalability of B-tree verification by fact aggrega-
tion. Parallelism and multiple CPU cores speed up the verification task, because a single
CPU core cannot perform in-page verification, fact extraction, and sorting with the same
bandwidth as the disk drive. However, parallelism adds its own overhead, too, and using
both CPUs fails to cut elapsed times in half.

The 4™ set of bars in Figure 6 (marked “all indexes, in-page checks only™) illustrates
the additional data size due to non-clustered indexes. For in-page verification of both
clustered and non-clustered indexes, execution times rise beyond those of the “select
count (*)” query and the clustered index in-page verification by a fairly uniform amount.
In the experimental database, the size of the non-clustered indexes relative to the clus-
tered index is about 40% for the “orders” table and about 35% for the “line items” table.

The 5™ set of bars in Figure 6 (marked “all indexes, full checks, no NC index hash™)
illustrates the cost of B-tree verification for multiple indexes in a single operation. All a
table’s B-trees are checked completely but indexes are not matched against one another.
Thus, this experiment shows the same task as the 3" set of bars but for an increased data
volume. The performance difference between the 4™ and 5" sets of bars is quite similar to
the performance difference between the 2" and 3™ sets of bars. For example, the differ-
ence between 162% and 229% is 41% (229/162=1.41), appropriate for the data volume.

The results discussed so far enable a few conclusions. First, verification of a B-tree
structure using fact aggregation is many times faster than a traditional method based on
index navigation. Second, due to its foundations in query processing and efficient sorting,
verification using fact aggregation scales very well. Third, verification of a B-tree’s struc-
ture is still the most expensive aspect of B-tree verification.

The 6" set of bars in Figure 6 (marked “all indexes, full checks”) illustrates the cost
of bitmap processing. As readily apparent in a comparison to the 5" set of bars, matching
records in clustered indexes with records in non-clustered indexes using bitmaps adds
only about 12-20% to the execution times; much less if two CPU cores are employed.
This is a low cost for the added value; the best alternative a join for each non-clustered
index. It is important to realize that the bitmap operation requires only a small amount of
memory, and that this amount is virtually independent of the data size.

This low additional CPU load due to bitmap processing (in this case, for cross-index
verification) also points to further possible gains. Both CPU load and overall verification
performance would improve if cross-page verification within each B-tree would use bit-
maps instead of sorting and aggregation of fact records, i.e., would use the new B-tree
verification algorithm proposed in this paper. Instead of adding 35-40% to the cost of the
data scan, cross-page verification would add merely about 1-2%. It would add less than
the 12-20% observed above for bitmap processing because there are merely 2 facts per B-
tree node, not tens or hundreds of keys per leaf. Moreover, verification efforts for larger
databases and indexes would increase linearly rather than with the O (N log N) complex-
ity of sorting, and it would avoid entirely any I/O to temporary run files.

To summarize the performance observations, B-tree verification can be performed at
I/0O speeds, including complete verification of all links and relationships within each B-
tree index and of the relationships of each non-clustered index and the clustered index.
The introduction of fact extraction and aggregation has been a tremendous improvement
over the prior verification algorithm based on index navigation. The cost of bitmap proc-
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essing (as observed for cross-index verification) indicates that reliance on bitmaps also
for cross-page verification could further improve performance and scalability. It could
enable streaming verification not only during scans but also during backup and restore
operations, during database mirroring, and any other database utilities that essentially
perform copy operations of databases or tables.

S Summary and conclusions

In summary, consistency verification within and between B-tree indexes is as impor-
tant as solid concurrency control and dependable backup. Production users invoke consis-
tency verification weekly or even daily in order to guard against data loss due to prob-
lems in their hardware or software, from SAN management software and networking to
device drivers and the database management system itself. Moreover, verification of on-
disk data structures is invoked even more frequently during development and testing of
database software [WY 95], where high performance and good scalability directly con-
tribute to shortening the testing effort and thus the development schedule.

Intra-page verification is fairly straightforward, although further opportunities for in-
novation have been identified. For inter-page verification, there is a surprising variety of
algorithmic approaches. For pragmatic reasons that each seemed decisive at their time,
the developers of SQL Server have, over the course of more than 20 years, taken different
approaches to different aspects of the overall problem. Other database products have
gone through similar histories. In this paper, we have reviewed these approaches, com-
pared their strengths and weaknesses, and evaluated their performance inasmuch as pos-
sible with a product that cannot readily be modified for such investigations.

Based on these improvements, database verification proceeds at nearly the speed of
scans. Bandwidth above a gigabyte per minute can be observed on ordinary workstations
using fact aggregation within B-trees and bit vector filtering across indexes. A verifica-
tion task that takes minutes today used to take hours or even days using index navigation.

Among the new insights of this research, the most important is the advantage of fence
keys for efficient B-tree verification. In addition to their benefits explored in earlier work
[G 04], they permit complete and correct verification of all relationships among B-tree
nodes and their keys. In particular, as illustrated in Figure 4, they easily solve the cousin
problem illustrated in Figure 3, including second cousins, third cousins, etc. Moreover,
due to the avoidance of all “less than” comparisons in cross-page checks, fence keys
permit replacing the current algorithm based on sorting and aggregation with an algo-
rithm based entirely on bit vector filtering. The resulting algorithm reduces both process-
ing effort and memory requirements for efficient index verification in very large data-
bases. Thus, this improved algorithm promises to keep up with the highly tuned I/O
mechanisms used in backup and restore, a capability database owners demand in order to
avoid a separate verification step for their backup media.

Many further extensions and improvements of the algorithms described here are pos-
sible. Obvious extensions include generalizations for partitioned and shared-nothing ar-
chitectures, automatic repair of corrupted on-disk data structures, coverage of data dupli-
cation and replication including database replication and mirroring, and coverage of other
storage formats in addition to traditional B-tree indexes. Such other formats range from
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unordered heap structures and storage structures for large binary objects to bitmap in-
dexes and column stores. Further possibilities include verification of complex values in-
cluding XML objects and user-defined types, online verification during active transaction
processing, and incremental verification exploiting short periods of low user activity.
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