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Abstract: Over time, large scale pickup and delivery providers acquire considerable
amounts of data on customer orders, including order times, amount and configurations
of freight, as well as the locations for pickup and delivery. If their fleet is equipped with
tracking devices, additional GPS data can be provided and actual travel routes can be
saved for later evaluation. In this paper, we present two use cases for a discrete event-
based simulation in the context of transportation companies. We also discuss ways
to use company-internal data in order to simulate near-realistic scenarios that build
the foundation for internal education and training of human dispatchers and that can
at the same time be used for benchmark tests for different allocation and scheduling
strategies.

1 Introduction and Motivation

The field of vehicle routing problems (VRP) has been widely researched. Algorithms
for optimal solutions as well as essential (meta) heuristics (see e.g. [Dom07, Ohr08])
have been established and there are constructed de facto standard benchmarks that new
approaches can be tested against (e.g. [SBS88]). A related problem is the pickup and
delivery problem (PDP), in which each transport request is made up of two locations; one
for pickup and one for delivery. It contains the VRP as a special case if all pickup locations
start and end at a depot. [SS95] have formulated the General PDP (GPDP) in order to
create a model that comprises most practical pickup and delivery situations including split
loads, reloads, multiple vehicle types, and time windows. Solutions to the GPDP always
consist of both allocation of vehicles to freights or vice versa and of the scheduling of
vehicles. Allocation and scheduling influence each other and depending on time windows,
allocations may imply scheduling as well.

Conventional search strategies for optimal solutions both of the VRP and the (G)PDP
are often based upon deterministic problem instances, i.e. all transportation requests and
all distances between pickup and delivery locations are known ex-ante. Real-life pickup
and delivery providers, in contrast, face a continuous flow of incoming customer orders.
Often, response time for allocation and scheduling of urgent orders must be extremely
low. Consider the automotive sector, for example, in which late delivery of critical parts
can easily cause very expensive production downtimes. Orders can also change over time,
e.g. they can be updated or even canceled, and unpredictable external events like traffic
jams additionally interfere with routing plans.



Due to these real-life restrictions, transportation companies have no choice but to strongly
rely on heuristic approaches for allocating and scheduling their vehicles. Many details
still need to be dealt with by human dispatchers and their professional experience. This
applies even more to companies that operate on a per-call basis and do not run large trans-
shipment centers. Decision support systems (DSS) help human dispatchers to visualize the
current order situation.! They can provide a recommendation engine (that in turn relies on
above mentioned heuristics) that is able to quickly suggest favorable dispatches, i.e. it rec-
ommends allocations for vehicles to freights and vice versa and may additionally support
vehicle scheduling. Figure 1 shows a prototypical setup for a transportation company.
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Figure 1: General System Landscape for Transportation Companies

2 Use Cases for Simulations of Pickup and Delivery

In this section, we will give two examples for the application of simulations at transporta-
tion companies. We will show ways to incorporate the simulation within existing system
landscapes.

In transportation companies, there are three very basic tasks for each customer order:
(1) the acceptance of the order, including its submission to the company’s software
system
(2) the allocation and scheduling of a vehicle (or more), and

(3) the subsequent surveillance of the transport.

Each of these tasks is typically handled by different employees. Hence, a simulation can
take over either one. In this paper, we suggest the simulation of task (1) and parts of

!n the context of this paper we focus on decision support systems for the "daily business’, i.e. dispatching of
vehicles and orders.



task (3), i.e. the placing of transportation requests into the system and the ’driving’ of
associated vehicles. Extra events as traffic events or changes of customer orders can be
modeled in order to increase realistic behavior of the simulation. In sum, the simulator
needs to cover three main categories of events — orders, vehicles, and environment — as
depicted in figure 2. Scheduling events are triggered by either human dispatchers (see
section 2.1) or automatically by the recommendation engine (see section 2.2).
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Figure 2: Categories of Events for a Simulation of Complex Pickup and Delivery Scenarios

The three categories of events presented in figure 2 are as follows:

Orders A set of transportation requests is to be released for dispatching at particular
times relative to the beginning of the simulation. As we will describe in chapter 5, release
timing may either be deterministic and thus repeatable or else probabilistic.

Vehicles One of the simulation’s core tasks is vehicle handling. The simulator must be
able to provide status and location of all vehicles at any given point in time. This challenge
is further discussed in chapter 6.2.

Environment Just like customer orders, environmental events (see chapter 4) must be
queued in the system. Especially cancelations can easily be treated as ’inverse orders’.
Beyond that, traffic-related events like congestions, road closures or accidents must have
a corresponding impact on simulated vehicles.



2.1 Education and Training

The education and training of new dispatchers in the scope of commercial transportation
is closely related to the specific decision support system that is used. While the functions
and display types of this software can be studied in theory, it is always best to let new users
gain hands-on experience at it. Yet there is a threat on real-life systems, when unskilled
users may accidentally enter wrong data and interfere with other employees’ work. This
can evidently be avoided by means of a simulation.

The application of internal historical data proves to be very beneficial within this context
because it is already preprocessed and available in the company’s database format. A
simulation can simply be run on an additional database of the same format, automatically
rendering it compatible with existing decision support software. That way, in task (2),
human dispatchers can interact with the simulation in the exact same manner as with real-
life situations; at best it will be completely transparent to them (compare figure 1 to upper
part of figure 3).

2.2 Computational Tests

Another application for a simulation at a transportation company is the analysis and op-
timization of their decision support system; the recommendation engine in particular.
For this engine there must be an underlying set of strategies used for computing allo-
cation/scheduling suggestions. In plain theory, the system would yield acceptable trans-
portation plans if dispatching relied completely on the recommendations. A different set of
allocation/scheduling strategies for the recommendation engine can be considered superior
if transportation plans that are created — again — by only following computed suggestions,
are better. Quality criteria for a transportation plan include e.g. overall travel time or dis-
tance, the number of customers served, induced expenses, etc. Development and testing of
new allocation/scheduling strategies can strongly be supported by a simulation. The lower
part of figure 3 depicts such a benchmark scenario for a series of strategies.

Note that this use case is operated completely without human dispatchers. Therefore a
computational interface is needed for exclusive interaction with the recommendation en-
gine and the strategies that are to be examined. The interface must allow to

e assign vehicles to freight and/or vice versa,
e assign routes to vehicles,

e set departure times for vehicles,

o split freights (if allowed), and

e assign trailers to vehicles (if trailers are used).

If reloading is prohibited, vehicle-to-freight assignments also routing decisions as well,
since vehicles always head directly towards pickup or delivery points, respectively. Sim-
ilarly, the setting of departure times for vehicles can be interpreted as setting of waiting
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Figure 3: Simulation Setup for Transportation Companies
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times. Note also that the relocation of empty vehicles may often be wise too, as addressed

e.g. by [MMLO4].

For compatibility reasons, historical data is a good choice for this use case, too. The main
difference in comparison to the educational setting is obviously possible simulation speed.



3 A Closer Look at Allocation and Scheduling Strategies

For a better understanding of allocation and scheduling strategies, in this section we will
give an example of what such strategies may look like. Consider the case of a pickup
and delivery service provider using a fixed set of reloading centers. Consolidation of
freights from different orders can help to reduce costs and increase shipping volume of
the transportation company. The following example allocation strategy aims for pairwise
optimal consolidation of freights. In the course of analysis, reasonable detours to the
reloading centers are considered. For this strategy, a specific data type is introduced: the
basic request.
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Figure 4: Structure of a Basic Request

Every basic request comprises exactly one loading item and one unloading item. These,
in turn, consist of the location for (un-)loading, the estimated loading duration, and freight
information including time windows. Additionally, reloading is modeled by subdivision of
basic requests into exactly two closely linked child elements. The unloading location of the
resulting first child element is always equal to the loading location of the second. If time
windows allow for more than one reloading, subdivisions can be performed recursively
leading to a tree structure as indicated in figure 4. The tree contains all possible detours
to the reloading centers for the underlying customer order. Note that every basic request
but the root element has either exactly one direct predecessor sibling or successsor sibling,
respectively.

Evidently, every customer order can be mapped to a basic request. In a pre-processing
step, the basic requests’ time windows are analyzed for potential reload at the reloading
centers, i.e. the 'reloading tree’ for each basic request is calculated. Now, the algorithm
searches for proper pairs of basic requests where the second element of the pair is part of
the tree for 0,,¢,,. The basic routine for a given 0, is described below.



1: {Initialization}

2: bestPair «— NULL

3: bestMatchingV alue «— —oo

4.

5. {Main Part}

6: for all 0,4 in open orders do

7. if time windows of 0,;4 and 0;,¢,, do not overlap then

8: goto next open order
9: end if
10:
11:  if combined freight of 0,;4 and 0y, is too large then
12: goto next open order
13:  end if
14:
15:  for all br,;4 in basic request tree for 0,5 do
16: if time windows for br,;4 and 0,,¢,, prevent consolidation then
17: skip subtree starting from br,;4
18: end if
19:
20: testPair «— (broid, Onew)
21: testValue «— calculate M atchingV alue(broid, Onew)
22 if best M atchingV alue < testValue then
23: bestPair «— testPair
24: best M atchingV alue « testValue
25: end if
26:  end for
27: end for

28: return bestPair

The best pair is suggested for consolidation of freights; quality criteria (line 21) can be
taken from chapter 2.2. During the search, the tree structure is exploited so that not every
pairing is examined (line 17).

4 Data Sources

This section will give an overview where relevant data for simulations can be taken from.
It is geared to the three categories of events, introduced in section 2.

Orders Each transportation request contains at least the exact locations for both pickup
and delivery, information on the freight that is to be delivered (e.g. weight, number of
items, occasionally dimensions), and — if desired — time windows. Often the timestamps
for creation of the orders are saved automatically, too, by the underlying database sys-



tem. Clearly, historical data of real-life customer orders can easily be incorporated into
simulations.

Vehicles Today, master data on company-owned vehicles is generally already stored in
companies’ life system databases. Relevant data includes at least information on the vehi-
cles’ capacity and the availability of a hitch. If external vehicles are employed on a regular
basis, their data is equally recorded. Depending on the size of the area served, companies
also model the speed of their vehicles. This data, however, can only be used in a gener-
alized way, due to interdependencies with assigned routes (e.g. highways, expressways,
motorways, etc.), external events, and particularly local regulations on driving hours (see
chapter 6.3). The mapping of an average speed to every single vehicle is normally not rea-
sonable. Instead, a standard average speed for the whole fleet is taken as a basis. In case of
a mixed fleet, transportation companies may distinguish between vehicle categories such
as cars, vans, and trucks.

Furthermore, modern delivery vans and trucks are equipped not only with navigational
systems but additionally with tracking devices that transmit the current position within
certain intervals. This positioning data enables transportation companies to quickly re-
spond to new customer orders, e.g. by assigning the closest vehicle available. While this
may be the primary reason for a carrier to collect positioning data, it can serve for analysis
and research purposes as well.

Environment While data for orders and vehicles is likely to be found in the databases of
transportation companies, environmental events such as traffic jams are far less frequently
recorded; many times they are completely dispensed with. An obvious reason for this
lies in the extra storage space that these records would require. Thus, most life system
database models are simply not designed to incorporate any data beyond the scope of
primary business.

The trivial way to handle the lack of environmental data is to simply neglect it. Generally
this is indeed a viable solution, as allocation and scheduling routines have to be optimized
for a stable surrounding in any case. Preferably however, data analysis is conducted be-
forehand as a means to extract possible environmental influences. If, for example, analysis
reveals regularities like seasonal fluctuation of customer orders or time-related traffic con-
gestions, these can be incorporated into the simulation.

5 Compilation of Benchmarks

As described in chapter 1, calculations for vehicle allocation and scheduling, as discussed
in this paper, rarely start from scratch. Instead, new customer orders constantly need to be
incorporated into existing transportation plans. Therefore every benchmark is preceded by
an initialization phase in which corresponding values are (optionally) assigned to all types
of data sources.



e New customer orders are queued before the start of the simulation. For a more
realistic scenario, dispatched orders that are already en-route are queued as well.

e Status and availability of vehicles are determined and vehicles are positioned on
the map. In accordance to customer order initialization, some should already be
assigned to a transportation request and be on their way to either a pickup or delivery
point.

e Most environmental events do not require initialization. Especially cancelations and
freight changes only make sense once the simulation is up and running. Traffic jams,
on the other side, are set up as desired.

In the following sections different ways for data compilation are discussed. Note that these
are applicable for both the initialization phase and the actual benchmarks.

5.1 Time Machine Approach

This approach may well be the most intuitive one. The idea behind this is to pick scenarios
from the past and re-run them in simulation. Unlike the lessons learned approach (see
below), this approach allows for a way of data mining historical decisions. If supported
(see e.g. [KBO1]), the underlying database system may help extracting consistent data for
the benchmarks.

Advantages This approach enables re-enactment of historical data in a movie-like man-
ner. If original allocation and scheduling decisions are replayed as well, the company’s
decision support software can be used in order to repeatedly examine benchmark scenar-
ios in real-time from different *angles’. This may, in turn, reveal strengths and weaknesses
of that software with respect to the quality of visualization and/or decision supporting.

Disadvantages By nature, the time machine approach only aims to improve readiness
for situations that have occurred before. Depending on the stability of transportation re-
quests, this may not lead to appropriate benchmarks. Also, care must be taken to avoid
overfitting of strategies to the benchmarks. A strategy that provides a particularly good
solution for one time machine benchmark does not necessarily have to perform well in
others, let alone in real-life situations.

5.2 Statistical Approach

In contrast to the time machine approach, the statistical approach generates artificial sam-
ples. Costumer orders are analyzed for frequency, timing and regional distribution. Like-
wise, the weight, number of items, and possibly the dimensions of freights are examined,



too. Even environmental events can be modeled on such a basis. Consequently, a set of
benchmarks is calculated as a mean over the analyzed samples.

Advantages Benchmarks for the statistical approach can be automatically computed.
That way, test instances can easily be updated on a regular basis, allowing for quicker
adaptation to changes (e.g. new key account customers) than other approaches.

Disadvantages This approach is very sensitive to the variance of the underlying samples.
There is arguably no such thing as a meaningful average order or average freight. So the
significance of derived benchmarks should always be subject to further analysis.

5.3 Lessons Learned Approach

In analogy to unit tests in programming (see e.g. [Ham04] or [HTO03]), the this approach
provides repeatable, deterministic, and discriminable test instances. In the scope of pro-
gramming, the main purpose is the verification of correct behavior of software during
development. In the context of a transportation company, this translates into in-depths
tuning of typical or even crucial scenarios so that mistakes during the process of allocation
and scheduling are not repeated.

Benchmarks can vary in numerous degrees of freedom. For the majority of pickup and
delivery companies, for example, there is a significant difference concerning customer
order frequency between business on weekdays and on weekends. Similarly, benchmark
instances can be modeled particularly with regard to an efficient dispatch of trailers. Note
that the lessons learned approach can be combined with both the time machine and the
statistical approach. In contrast to the stand-alone time machine approach, however, this
approach is typically used for smaller benchmarks, i.e. the duration of test instances is
shorter and/or less orders and/or vehicles are incorporated.

Advantages This approach is particularly suitable if practical experience has shown that
certain constellations of vehicle and order distribution repeatedly yield poor transportation
plans. Thus, benchmarks can act as a continuously growing memory for common mis-
takes at allocation and/or scheduling. Another field of application for this approach is the
separate optimization of service for certain customers such as key accounts.

Disadvantages The identification of lessons learned test instances is in itself not a trivial
task. Also there is no guarantee that if allocation/scheduling strategies for these bench-
marks are improved, this will increase overall business performance. If the selected test
cases represent only a minority of everyday situations, tuning towards them might even
have the opposite effect.



6 Limitations of Simulations

Obviously a simulation may never be a perfect substitute for reality. For a complex system
like the one described in this paper, there are by far more degrees of freedom than can ever
be modeled within a simulation. Hence in this section, we will take a closer look at the
main limitations for a simulation of pickup and delivery scenarios.

6.1 Data Quality: Lacking and Vague Data

One of the biggest challenges when employing historical data for benchmarks is data qual-
ity. While GPS data quality for vehicle locations is more than sufficient, arguably simple
data as for orders and freights is often not very accurate in praxis. This is particularly the
case when customer orders are business to business. For large freights e.g. in the auto-
motive sector, it is not unusual for one company to place procurement orders for another
without knowledge of the exact weight, dimensions or number of the transported goods.
As with average speed (see chapter 4), the lack of information can be coped with by means
of abstraction. Freight categories can be introduced so as to provide at least some order of
magnitude; preferably these correlate with vehicle categories.

Another reason for less planning reliability relates to the customers; namely their shipping
processes. (Re-)Loading times can vary a lot among carriers and may account for a very
high proportion of the overall transportation time. Prediction of these times is difficult as
they heavily depend on the current situation at the carrier, e.g. there may be many other
vehicles waiting with only one loading zone available. Modeling loading durations for
each carrier separately would cause a considerable overhead. A simple way to incorporate
loading times into transportation plans is to do calculations with a single general loading
duration. 1t should be set long enough to cover the majority of cases. This approach
will mostly overestimate loading durations and — unlike an underestimation — still lead to
feasible transportation plans.

6.2 Map Matters: Distances and Locations

For every customer order, the knowledge of distances and routes between locations is
paramount for planning purposes. Whether transportation companies run their own map
server or use third party services, the determination of these two values remains a bot-
tleneck. This applies especially for computational analysis scenarios such as the above
mentioned recommendation engine of a decision support system. When comparing many
alternative routes and plans, distance calculations can easily be the most time-consuming
part. For practical reasons, a recommendation engine’s heuristics may need to revert to
air-line distances and only analyze the most promising results in detail.

When modeling a simulation for a transportation setting, the question of positioning for
the vehicles arises, i.e. when a vehicle is on the way, where should it be localized after a



certain amount of time? Surely, if routes are chosen that stem from historical data, most
exact positioning is available. Yet driving of new routes must be emulated, too. As a
solution, the entire simulation could be designed for air-line distances. However, these
distances would continuously be underestimations. Thus average speeds, loading times
and other time-related activities would need adjustments for comparison with historical
routing plans in order to answer questions like *"Which routing plan is better?’. Also, the
actual road network (i.e. even the availability of roads) would be neglected and vehicle
positioning events (see figure 2) would suffer from a lack of quality.

6.3 Journey Time: Regulation of Driving Hours

The simulation of driving times is closely associated with above described map-related
concerns. In reality, these times are additionally affected by regulations on driving hours.?
While there are already mathematical models available that incorporate these regulations
(see e.g. [KMO09)), they still impose great challenges for both academic and practical set-
tings. Extending the vehicle model for this purpose is not adequate since employed drivers
can easily share vehicles. Thus the inclusion of regulated driving hours into the simulation
can only be achieved by modeling drivers as well. However, due to the complexity of the
regulations, taking rest periods in praxis is often a ’strategic’ issue, as for example work-
ing periods may be prolonged only a couple of times during a week. Once more, adapted
average speeds can serve as a compromise, particularly when applied to longer distances.

7 Conclusion and Outlook

In this paper, we introduced two applications for simulations in commercial transportation
settings; one for the education and training of dispatchers and one for analysis and opti-
mization of decision support software. We argued that the use of historical data can be
most beneficial for transportation companies for these simulations and showed how sim-
ulations can be organized. Furthermore, we explained the idea of allocation/scheduling
strategies by detail. In order to compose benchmark tests that can be run in simulation,
three different approaches were presented. In the last section, we discussed the limitations
of the simulation.

Currently we are working on a similar setting in order to research allocation and scheduling
strategies for the general dynamic pickup and delivery problem. Having access to five
years worth of real-life historical data from a large business to business transportation
service provider, future work will include a feasibility study of the matter.

2For example, in the EU drivers are required to take breaks of at least 45 min after every 4.5 h of driving. See
EC Regulation (EC) No 561/2006 for further details.
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