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Deconvolution problems arise when the probability density function (pdf) of a quantity Y is
estimated even though Y cannot be measured directly. In this scenario, the pdf of Y has to be
inferred from related quantities X1,X2, . . . which are measured instead. Several algorithms
solving this task have been proposed in particle physics, a Ąeld where deconvolution
problems frequently arise. In this extended abstract, we summarize our Ąndings made from
a data science perspective [Bu18] and our on-going work on deconvolution.

The term Şde-convolutionŤ (also known as ŞunfoldingŤ) is motivated by the traditional
formalization of the problem, which models the pdf g : X → R of the observed quantities as
a convolution of the sought-after pdf f : Y → R of Y with another function R : X×Y → R.
In this model, R represents a conditional probability function which is learned from a set of
training data. The goal is to infer f from given g and R.

g(®x) =
∫
Y

R (®x | y) · f (y) dy (1)

Traditional approaches maximize the likelihood [Bl85] or employ BayesŠ theorem [DŠ95]
in a discrete variant of this formalization. Thus, they estimate the probability P(Y ≡ i) of
each discrete state i of Y . Unfortunately, previous publications only present these methods
as single monolithic instances. Two of our contributions are the uniĄcation of traditional
algorithms and the identiĄcation of theoretic similarities between them.

Furthermore, we advocate a more recent approach [Ru16] based on supervised machine
learning. It recasts deconvolution as a classiĄcation task, providing a modular framework in
which the learning method is exchangeable. The idea is to recover each P(Y ≡ i) from a
classiĄerŠs conĄdence cM (i | ®x), which is interpreted as a probability conditioned on each
observation. This reconstruction is then repeated in an expectation maximization (EM)
procedure. While the original algorithm exhibits a diverging behavior, we propose several
improvements which lead to a robust and also accelerated algorithm.
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Fig. 1: The reconstruction quality of Ąve methods is assessed in terms of the Earth MoverŠs Distance
(EMD) between their estimates and the true discrete solution ®f ∈ Rd . On the left, we present an
experiment with many observations [Bu18], while on the right only few observations are available for
deconvolution (on-going work). Our improved method, DSEA+, performs well throughout.

P̂(Y ≡ i) =
∑
®x∈X
P̂ (Y ≡ i |X = ®x) · P̂(X = ®x) =

∑
n

cM (i | ®xn) ·
1

N
(2)

Finally, we evaluate the traditional approaches and the learning-based method in comparative
experiments. The essence of our Ąndings, as indicated by Fig. 1, is that all methods are able
to obtain results of a similarly high quality, given that they are provided enough observations.
One notable exception to this end is the learning-based approach without our improvements,
which produces less accurate results.

In our on-going work, we are investigating relations between deconvolution and other
tasks in machine learning. For example, we establish a connection to transductive learning.
Also, we apply our methods to text corpora of political manifestos, thus demonstrating that
deconvolution is a general data science problem by far not limited to particle physics.
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