
Mobile Devices as Secure eID Reader using Trusted

Execution Environments

Maximilian Stein

secunet Security Networks AG

Alt-Moabit 91c

10559 Berlin

Maximilian.Stein@secunet.com

Abstract: This work presents a prototype implementation of a smartphone as secure
eID reader using NFC technology. The presented approach aims to reach a security
level close to standalone smart card readers. This security level will be allowed by
the means of a trusted execution environment (TEE) which allows strong isolation and
separation for critical applications and provides trusted, not interceptable user input
and output. The prototype supports the German eID (nPA) and follows the relevant
guidelines.

1 Introduction

Mobile internet devices (smartphones, tablets) have become the omnipresent companion in

the modern society. The capabilities and processing power of today’s devices is enormous.

Especially high-end devices featuring quad-core CPUs and high definition graphics can

compete easily with mid-range PC systems while being smaller, more energy-efficient

and portable. They can satisfy nearly all needs of an ordinary PC user like access to the

internet, e-mail and social networks, music and video playback or other entertainment.

In the long run mobile internet devices may replace the PC for such users and use cases

completely.

National electronic ID cards are emerging slowly but surely. In Germany there are yet

few citizens using their eID in online processes and there are still not many applications

available. Nevertheless electronic IDs are believed to become more important and will

be essential in future citizenship. To gain more acceptance from citizens though, it is

important to provide low-threshold access to technology and knowledge for the usage of

electronic IDs. The necessity of an additional, expensive reader device to make use of eID

cards is not likely going to raise acceptance.

Since a few years mobile internet devices feature near-filed-communication (NFC) tech-

nology. Among others the NFC specification is based on the standard for contactless

smart cards [ISO11]. Therefore NFC-devices are technically enabled to communicate

with proximity cards like national eIDs. By this they can be used as card reader for eIDs

and other smart cards. This has already been implemented for the German eID in [Hor11]

11



and [Mor12]. Both showed a proof of concept that the eID can be accessed using the

PACE protocol through a NFC-enabled mobile phone (Nokia 6212 & Openmoko Neo

FreeRunner customized smartphone). The security established through PACE depends on

the secure input of the PIN on the device. The security in both approaches relies only

on the assumption that the used mobile devices are trustworthy and no user input can be

intercepted by a software of an attacker. However, since mobile devices gained popular-

ity, more sophisticated attacks and malware for such devices emerged. For this reason

smartphones and tablets have to be regarded as potentially untrustworthy and malicious.

The present work presents an approach to use a NFC-enabled mobile internet device as se-

cure embedded reader for the German eID card by using a trusted execution environment

(TEE). The remainder of this work is structured as follows. Section 2 briefly presents

related work. In section 3 the basic principle of a trusted execution environment is de-

scribed. Section 4 presents the current embedded smart phone reader implementation.

Finally section 5 concludes this paper.

2 Related Work

Horsch [Hor11] implemented the eID application MONA as Java MIDlet on a Nokia 6212.

It is capable of performing an online authentication with the German eID card. In [Mor12]

Morgner implemented an embedded eID reader with PACE support on an Openmoko Neo

FreeRunner customized smartphone with SHR Linux operating system. The implemen-

tation relies on OpenPACE [MO12], an open source implementation of PACE based on

OpenSSL. An efficient implementation of the PACE protocol for mobile devices has been

proposed in [WHB+11]. Alternative solutions for the security concerns regarding the

mobile use of eID and eSignature were proposed in [BHW12] and [BHWH11], respec-

tively. An open source eID application for the German eID for Android devices is available

through the Open eCard project [Ope12]. This app supports multiple methods to access the

eID card. It is possible to use an external reader or the internal NFC interface, if available.

The Governikus Autent PINApp [bre12] provides PIN management functionalities on An-

droid devices for the German eID. The NFC Tag Info app [Hag13] is capable of reading

electronic passports (eMRTDs) via basic access control (BAC) but does not provide PACE

capabilities.

3 Trusted Execution Environment

A trusted execution environment (TEE) is a separate execution environment that runs

alongside the Rich OS (i.e. regular mobile device OS). The TEE provides security ser-

vices for the rich environment and isolates access to its hardware and software security

resources from the Rich OS and its applications [Glo11].

Figure 1 depicts the TEE architecture as envisioned by the GlobalPlatform industry forum.

It was designed for mobile and embedded devices but could be used for PCs as well if

12



all requirements are met. The three depicted TEE APIs in figure 1 were specified by

GlobalPlatform in 2010 and 2011, respectively.

Rich OS Application Environment Trusted Execution Environment

Client Applications

Rich OS

Hardware Platform

Trusted Applications

HW Secure

Resources

TEE Kernel

GlobalPlatform

TEE Functional API

GlobalPlatform TEE Client API

GlobalPlatform TEE Internal API

Trusted Core

Environment

Trusted

Functions

Secure Storage
Trusted UI (Keypad, Screen)
Crypto Accelerators
Secure Element

Figure 1: Architecture of the TEE as specified by GlobalPlatform

The security of the TEE relies on hardware extensions that help isolating the two envi-

ronments. The hardware architecture to enable TEEs on ARM based mobile devices is

the ARM TrustZone technology [ARM02]1. The TrustZone extensions are integrated into

the SoC and comprise an address space controller, memory adaptor, interrupt controller,

reserved secure cache, and hardware keys. These features are available for ARM Cortex-A

processors if and only if they were included by the SoC manufacturer. Secure operating

systems can be implemented on top of the TrustZone hardware2. The physical CPU is

presented as two virtual CPUs to the secure OS via TrustZone. One CPU dedicated to the

rich environment and the other one to the trusted environment. In TrustZone terminology

the rich OS application environment is referred to as Normal World (NWd) and the TEE as

Secure World (SWd). The secure operating system controls the virtualisation, the security

extensions, and provides the TEE.

A TEE can host multiple trusted applications. These applications are executed in the

trusted environment where the TEE guarantees isolated execution between different trusted

applications, protection, confidentiality and integrity. Trusted application binaries are

stored in the file system as cryptogram and they are verified by the TEE each time be-

fore their execution. The root of trust for the TEE is established at boot time through a

chain of trust: a hardware anchor verifies the boot loader which in turn verifies the TEE

loader which verifies the TEE system image.

Current TEEs based on ARM TrustZone were MobiCore by Giesecke & Devrient and

Trusted Foundations by Trusted Logic Mobile. However, both decided to merge their

products in a joint venture named Trustonic3 together with ARM. The TEE developed

1Other hardware architectures with similar features are for example Aegis, XOM, and SecureCore.
2TEEs can be implemented through pure software virtualisation as well (XenARM, SIVARM), but lack the

additional security through hardware support.
3http://www.trustonic.com/about-us/who-we-are

13



by Trustonic is called <t-base. Sierraware implemented the SierraTEE and SierraVisor

TEE solution which is freely available under the GNU GPL v2 license for the Samsung

Exynos 4412 and nVIDIA Tegra 3 SoCs. So far Giesecke & Devrient’s MobiCore was

integrated in the Samsung Galaxy S3 and the Galaxy Note II. Since Samsung is hardware

integrator and device maker partner of Trustonic it can be expected that Samsung will

integrate <t-base in upcoming high-end devices too.

4 Implementation

The prototype device used for the implementation is a Samsung Galaxy S3 (GT-i9300)

NFC-enabled smartphone running Android 4.1.1. The device combines all necessary com-

ponents for the use of an eID card in one entity. Table 1 shows the analogy of components

in the mobile eID reader system.

Original Component Counterpart in Mobile Scenario

Host Computer GT-i9300 NWd with Android

eID Application Android App (e.g. Open eCard)

eID Reader Hardware GT-i9300 SWd virtual CPU

eID Reader Firmware Trusted Application (Trustlet)

eID Reader Driver Trustlet Connector

Table 1: Analogy of components in the embedded eID reader system

A regular smartphone has the same capabilities of using an eID securely as a regular PC. It

requires a smart card reader with a PIN pad, that is connected via the USB interface, and it

needs to run an eID application. The already mentioned Open eCard project provides such

an open source eID application for the Android OS. It is capable of using external smart

card readers via USB and the internal NFC interface.

The here described eID reader implementation is an embedded smart card reader, which

consists of a firmware part and a driver part. So far, this is identical to regular standalone

eID readers. The difference is, that the firmware of a standalone reader resides inside the

reader hardware. As shown in table 1, the reader hardware in this approach is physically

the same as the host computers hardware, therefore it is called an embedded eID reader.

The smartphone is split up into two virtual devices by the TEE. The eID application re-

sides in the so called normal world with the Android OS. The embedded reader firmware

resides in the secure world. By this, the embedded reader can be treated as if it had its own

separated hardware. The implemented prototype can be categorised as seen in table 2. The

depicted categorisation for the reader categories Cat-S and Cat-C is taken from [BSI13]

and shows the properties an eID reader has to have to be categorized as standard reader

(Cat-S) or comfort reader (Cat-C). The prototype currently implements a standard reader

with an additional display. So it can be categorized as Cat-S with additional functionality.

Regardless of certification issues, the prototype can be enhanced in future to implement

14



Cat-S Cat-S+ Cat-C

Interface to the host computer ! ! !

Contactless interface according to ISO/IEC 14443 ! ! !

Contact interface according to ISO/IEC 7816 !

PIN pad (secure PIN entry) with PACE support ! ! !

Display (2x16 alpha-numeric characters) ! !

Qualified signature with contact cards !

Qualified signature with contactless cards (e.g. identity card) ! !

Firmware update ! ! !

Table 2: Overview of Smart Card Reader Categories (source: [BSI13])

the properties of a signature terminal. In this way it implements the same properties as a

comfort reader only without a contact interface. As it is unlikely that smartphones will be

equipped with contact interfaces for smart cards, embedded readers like the presented pro-

totype will only be capable to implement the properties that are presented here as Cat-S+.4

The system architecture of the embedded reader and the associated components is de-

picted in figure 2. The shown eID reader Trustlet represents the reader firmware. The

Figure 2: Architecture for a device using the eID Reader Trustlet

reader driver is implemented through the so called Trustlet Connector. The Trustlet Con-

nector implements the PC/SC IFD handler interface through which it can be accessed by

any application, that is PC/SC aware. Generally the Trustlet Connector provides the se-

curity services of the Trustlet to regular applications in the NWd. Any information that

is proccessed inside the Trustlet will not be accessible for NWd applications unless pro-

vided through the Trustlet Connector. The PIN Pad API, the Secure Display API, and the

Cryptographic API are provided by the TEE itself. The PIN Pad and Secure Display API

together provide a trusted user interface which is immune to interception and manipulation

by other software.

4Please note that no new reader category is proposed here. The name Cat-S+ is only chosen to symbolize the

enhanced functionality compared to a Cat-S reader.

15



4.1 Trustlet

The embedded eID reader firmware is implemented as trusted application – a so called

Trustlet as depicted in figure 2. The TEE is capable to isolate the execution of Trustlets

and grants access to a secure user interface. In this way it is guaranteed that: (i) all process-

ing results and the execution of the Trustlet itself is safe to interception and manipulation

by malicious software (neither Android Apps nor other Trustlets), and (ii) a PIN can be

entered directly inside the protected environment.5

The Trustlet implements the PACE protocol by using the internal cryptographic API that

is provided by the TEE. The NFC interface is not (yet) available for Trustlets due to lack

of driver support by the TEE. However, the GlobalPlatform TEE roadmap shows that

additional peripheral devices like the NFC interface will be included in future versions

of the specification. Currently the APDUs are transmitted from the inside of the TEE

to the eID card through the Trustlet Connector via the Android NFC API. However, all

secret information and processes of the PACE protocol – the PIN, key material and key

generation – are isolated inside the TEE. The APDUs are transmitted encrypted through

secure messaging between the endpoints Trustlet and eID. The security of this solution

relies on the security of the PACE protocol. This is because the interface between the

Trustlet and the eID can be assumed to be as insecure as the air interface in a regular

PACE establishment process. The encrypted APDUs are interceptable from the NWd,

because they are forwarded by the Trustlet Connector and the Android NFC API. Since the

PACE protocol for key-agreement has been proven to be secure [BFK09], the implemented

transmission of APDUs via the normal world can be considered to be secure as well.

It is intended to implement extended access control (EAC v2) in the future to use the smart-

phone as signature terminal for the German eID as well6. The mobile eID reader can reach

a security level comparable to a physically separated standalone card reader device through

the hardware backed detachment of NWd and SWd. A security and conformity certifica-

tion according to the technical guidelines of the German Federal Office for Information

Security [BSI13, BSI11] seems possible at the moment. However, this highly relies on the

certifications for TrustZone hardware implementations and TEE systems, which is a future

challenge.

4.2 Trustlet Connector

To access the eID Reader Trustlet from any application in the NWd, a counterpart is re-

quired – the so called Trustlet Connector. In the prototype implementation the Trustlet

Connector is an Android app that bundles two native C/C++ libraries, the native NFC

wrapper and the actual Trustlet Connector library.

The Trustlet Connector is a standalone Android application with access to the Android

NFC API. This is necessary because the Android NFC API is only accessible from Android

5As of the writing of this paper the secure UI functionality is not yet available, see section 4.3
6The certification of such a solution poses a greater challenge than the actual implementation.

16



applications with the appropriate Android permissions. It can not be accessed directly by

native C/C++ libraries or executables. The Android app “catches” the eID when it is placed

on the device and provides access to it for the Trustlet Connector library. This is achieved

by providing transmission methods to the native NFC wrapper library via JNI. This native

wrapper provides a RPC server for the actual Trustlet Connector library. It should be

mentioned, that the NFC interface can not be used to actively poll for contactless cards

and to initialize connections manually. This functionality is encapsulated by the Android

NFC framework. Therefore apps can only wait for the NFC API to notify them, once an

eID – or some other NFC tag – is available. This implies, that it is impossible for the

embedded reader to power down the NFC interface or reset the connection with a present

card. The eID has to be moved from the device and then replaced manually to achieve this.

The Trustlet Connector library implements the PC/SC IFD handler interface. The IFD

handler is the driver of the embedded reader for the PC/SC interface. The IFD handler

is loaded by the PC/SC daemon, which makes the reader available to any PC/SC aware

application. In a regular PC environment this would be enough to provide access to the

embedded reader. But there exists no standard implementation of PC/SC for Android.

Therefore applications that rely on PC/SC may include the PC/SC library and daemon

locally. This is the case for the Open eCard App. In this case, the location of the driver for

the embedded reader has to be provided to the PC/SC daemon by a configuration file, to

make the reader available for the application. For the prototype, the corresponding class of

the Open eCard App was customized and a configuration file for the embedded reader was

added. The Trustlet Connector library resides in the data folder of the Trustlet Connector

app, the configuration file only points to the location of the driver library.

The Trustlet Connector library further contains an interface for the communication with

the Trustlet. This interface uses the systems TEE driver to communicate with the Trustlet.

The functional interface between the Trustlet and its Trustlet Connector can be defined

freely. Basically both components have access to a shared buffer and are able to notify each

other, if the content of this buffer has changed. Through this buffer, a RPC interface was

implemented to allow the Trustlet to execute specific functions of the Trustlet Connector

and vice versa. It should be noted that the shared buffer is not protected in any special way,

nor does it reside inside the TEE. Therefore no unencrypted secret information should be

written to it.

In short the Trustlet Connector app works as follows. When a contactless card is placed

on the NFC interface, the Trustlet Connector app will be notified by the Android event

manager and can be chosen to handle the event by the user. It will check if the present card

is a German eID and start a background service that will listen to the native NFC wrapper

library. The NFC interface can now be accessed via the native wrapper RPC server. If a

PC/SC daemon has already loaded the Trustlet Connector library, the IFD handler will be

informed, that there is a card present at the NFC interface. A PC/SC aware application is

now able to use the embedded eID reader.

The Trutlet Connector library is the hub of the implementation. It handles the function

calls from the PC/SC interface, from and to the Trustlet and to the native NFC wrapper.

17



4.3 Discussion

It has to be noted that the security of the overall implementation is highly depending on

the secure and correct implementation of the TEE and the proper implementation of the

Trustlet itself. For example it is crucial to implement the interface between the Trustlet and

the Trustlet Connector very carefully. Since the Trustlet Connector resides in the NWd, it

could be replaced by a malicious Trustlet Connector which tries to read secret information

from the Trustlet by manipulating pointer locations or input data.

The implemented reader was successfully tested to be usable by the Open eCard Android

app as external reader via PC/SC. The integration of the secure reader into an eID ap-

plication requires some effort as there is not yet a default smart card reader interface for

the Android OS.7 The integration via PC/SC allows the usage of the embedded reader on

unrooted off-the-shelf devices, because no special access rights like for the USB interface

are required for the application.

As of the writing of this paper the author is not aware of any off-the-shelf smartphones with

support for extended length APDUs. This is the same for the prototype device. Therefore

the prototype only allows PIN management functionalities for the German eID and is not

capable to perform an online authentication.

As of the writing of this paper the trusted UI functionality is not yet available, but is ex-

pected to be ready soon. The prototype therefore contains workarounds. In its current

form it can not be regarded as secure or trustworthy because the trusted user interface,

especially the secure PIN entry is the main feature that prevents unauthorized access to the

eID. As a workaround, for each of the two UI APIs an Android Activity was implemented

to simulate a PIN Pad and a “Secure” Display, respectively. When the Trustlet normally

would access the secure APIs, it currently calls the Trustlet Connector to start the appro-

priate Android Activity and to either return the entered PIN or display the given certificate

holder information.

5 Conclusion & Future Work

The present work showed the possibilities of using mobile internet devices as trustworthy

and secure card reader for eIDs. It further gave a short introduction to trusted execution

environments for mobile platforms as specified by the GlobalPlatform industry forum.

The general concept and advantages of a TEE were described. It was presented how an

embedded eID reader was implemented on an unmodified (but rooted) Samsung Galaxy S3

using a TEE. With the given implementation it is possible to use the eID in a mobile

scenario, meaning that it is accessed by applications residing on the mobile device itself.

Subject of future work is the usage of the smartphone eID reader as external reader for PC

systems. Furthermore the conformity and security certifications of the embedded reader

implementation pose the next steps in this working field.

7An implementation of a smart card reader API has been achieved by the SEEK for Android project, but is

not applicable due to system manufacturer restrictions

18



References

[ARM02] ARM Ltd. TrustZone R© technology. http://www.arm.com/products/

processors/technologies/trustzone.php, 2002.

[BFK09] Jens Bender, Marc Fischlin, and Dennis Kügler. Security Analysis of the PACE Key-
Agreement Protocol. In Pierangela Samarati, Moti Yung, Fabio Martinelli, and ClaudioA.
Ardagna, editors, Information Security, volume 5735 of Lecture Notes in Computer Sci-
ence, pages 33–48. Springer Berlin Heidelberg, 2009.

[BHW12] Johannes Braun, Moritz Horsch, and Alexander Wiesmaier. iPIN and mTAN for Secure
eID Applications. In MarkD. Ryan, Ben Smyth, and Guilin Wang, editors, Information
Security Practice and Experience, volume 7232 of Lecture Notes in Computer Science,
pages 259–276. Springer Berlin Heidelberg, 2012.

[BHWH11] Johannes Braun, Moritz Horsch, Alexander Wiesmaier, and Detlef Hühnlein. Mobile
Authentisierung und Signatur. In Peter Schartner and Jrgen Taeger, editors, D-A-CH
Security 2011: Bestandsaufnahme, Konzepte, Anwendungen, Perspektiven, pages 32–43.
syssec Verlag, sep 2011.

[bre12] bremen online services GmbH & Co. KG. Governikus Autent PINApp.
https://play.google.com/store/apps/details?id=de.bos_

bremen.android.autent.pinapp, 2012.

[BSI11] BSI – Federal Office for Information Security. Technical Guideline BSI TR-03105 Part
5.2: Test plan for eID and eSign compliant eCard reader systems with EAC 2, 2011.

[BSI13] BSI – Federal Office for Information Security. Technical Guideline BSI TR-03119: Re-
quirements for Smart Card Readers Supporting eID and eSign Based on Extended Access
Control, 2013.

[Glo11] GlobalPlatform. The Trusted Execution Environment, White Paper. http:

//www.globalplatform.org/documents/GlobalPlatform_TEE_

White_Paper_Feb2011.pdf, 2011.

[Hag13] NFC Research Lab Hagenberg. NFC TagInfo. https://play.google.com/

store/apps/details?id=at.mroland.android.apps.nfctaginfo,
2013.

[Hor11] Moritz Horsch. Mobile Authentisierung mit dem neuen Personalausweis (MONA). Mas-
ter’s thesis, Technische Universität Darmstadt, Darmstadt, 2011.

[ISO11] ISO/IEC. ISO 14443: Identification cards – Contactless integrated circuit cards – Prox-
imity cards, 2011.

[MO12] Frank Morgner and Dominik Oepen. OpenPACE: Crypto library for the PACE protocol.
http://openpace.sourceforge.net/, 2012.

[Mor12] Frank Morgner. Mobiler Chipkartenleser für den neuen Personalausweis: Sicherheits-
analyse und Erweiterung des „Systems nPA“. Diploma thesis, Humboldt-Universtität zu
Berlin, Berlin, 2012.

[Ope12] Open eCard Project. https://www.openecard.org, 2012.

[WHB+11] Alex Wiesmaier, Moritz Horsch, Johannes Braun, Franziskus Kiefer, Detlef Hühnlein,
Falko Strenzke, and Johannes Buchmann. An efficient mobile PACE implementation. In
Proceedings of the 6th ACM Symposium on Information, Computer and Communications
Security, ASIACCS ’11, pages 176–185, New York, NY, USA, 2011. ACM.

19


