
A Domain Engineering Approach to Specifying and
Applying Reference Models

Iris Reinhartz-Berger1, Pnina Soffer1, Arnon Sturm2

1Department of Management Information Systems
University of Haifa, Haifa 31905, Israel

iris@mis.hevra.haifa.ac.il, spnina@is.haifa.ac.il

2Department of Information Systems Engineering,
Ben-Gurion University of the Negev, Beer Sheva 84105, Israel

sturm@bgu.ac.il

Abstract: Business process modeling and design, as an essential part of business
process management, has gained much attention in recent years. An important tool
for this purpose is reference models, whose aim is to capture domain knowledge
and assist in the design of enterprise specific business processes. However, while
much attention has been given to the content of these models, the actual process of
reusing this knowledge has not been extensively addressed. In order to address this
lack, we propose to utilize a domain engineering approach, called Application-
based Domain Modeling (ADOM), for the purpose of specifying and applying
reference models. We demonstrate the approach by specifying a sell process
reference model and instantiating it for a chocolate manufacturer. The benefits of
utilizing the ADOM approach for specifying business models are the provisioning
of validation templates by the reference models and the ability to apply the
approach to various modeling languages and business process views.

1 Introduction

Business process modeling and design, as an essential part of business process
management, has gained much attention in recent years. Business process design is a
complicated task due to the increasing complexity of organizations and market forces
that drive organizations to continuously improve in order to sustain their competitive
position. Business processes entail a network of related activities, both within an
organization and in collaboration with its environment. While diversity of business
processes among organizations is high, there are many common aspects that apply to the
majority of the organizations which share common characteristics (e.g., market segment,
size, logistic typology, etc.). Moreover, knowing some of these commonalities can be of
help when inter-organizational processes are designed.

50

This fact has been widely recognized, and motivated the emergence of a number of
reference models, whose aim is to provide generic knowledge about business processes
in order to assist in their design in specific enterprises. To this end, reference models
prescribe what is sometimes termed “best practice” processes for a specific business
segment. Reference models were promoted by Enterprise Resource Planning (ERP)
vendors, who used them as a prescription for processes that should be adopted as part of
the implementation of the ERP system. Some of these models deal with business
processes only (e.g., [St01]) and some appear as part of a set of views in an enterprise
model (e.g., [Sc98], [Sc99]).

However, our observation is that while much attention has been given to the construction
of reference models and to the knowledge that is captured in them, the process of reusing
this knowledge through process design in a specific organization is somewhat neglected.
In particular, the reference models themselves provide little support (if any) to their
actual implementation.

In this paper we rely on a well-established discipline of domain engineering, applied in
software engineering for reusing various types of artifacts in the process of software
design, and introduce its principles to business process reference models. Specifically,
we adopt the Application-based DOmain Modeling (ADOM) ([RS04], [SR04]) approach
to reference models and utilize its embedded mechanism to facilitate the specialization
of a generic reference model to the specific needs of an enterprise. ADOM is based on a
three layered architecture: application, domain, and language. The domain layer consists
of specifications of various domains, while the application layer consists of particular
systems or business processes. The language layer includes metamodels of (modeling)
languages. ADOM enforces constraints among the different layers, or more precisely,
the domain layer enforces constraints on the application layer, while the language layer
enforces constraints on both the application and domain layers.

When adopting ADOM to reference models, the reference model itself serves as the
domain model, specifying and enforcing constraints on the application model, which is
the implementation of the business process in a specific enterprise. Thus, the
contribution of this paper is the establishment of an approach that provides guidelines
and validation templates when utilizing reference models. Due to the popularity UML
[OU03] gained in the software engineering and enterprise modeling communities, we
chose to apply the ADOM approach to reference models using UML activity diagram
notation.

The remainder of the paper is organized as follows. Section 2 is a literature review of the
two main areas that this paper integrates: business process reference models and domain
engineering. Section 3 introduces the ADOM approach, while Sections 4 and 5 explain
the construction of a domain (reference) model in ADOM and its instantiation in a
particular enterprise, respectively. We accompany these explanations with examples of a
Sell process (as a reference model) and a chocolate manufacturer (as a particular
enterprise). Finally, Section 6 summarizes the benefits of the ADOM approach when
dealing with process reference models and refers to future research plans.

51

2 Literature Review

This section reviews existing literature about business process reference models,
demonstrating our claim that model reuse has received relatively little attention. It
discusses types of reuse processes found in existing reference modeling approaches.
Next, the domain engineering literature explains how reuse support is emphasized and an
analogy to reference model reuse process approaches is presented.

2.1 Business Process Reference Models

Reference models have been discussed, classified, and evaluated using a number of
evaluation frameworks and criteria (e.g., [FL03], [FL05], [MZ00], [SR98]). However,
most of these attempts address mainly the model itself in terms of expressiveness and
adequateness, structure, compatibility, and other factors. When the application of the
model is addressed, the properties that are discussed are flexibility, extensibility, and
cost-effectiveness. The intended reuse process has not been addressed in these works as
a classification or an evaluation criterion. Nevertheless, reference models can be
classified based on their intended reuse process, which can be reuse by adoption, reuse
by assembly, reuse by specialization, or reuse by customization. We shall discuss each of
these reuse types and indicate examples when such exist.

Reuse by adoption: Reference models based on this approach (e.g., SAP [CL99] and
Scheer [Sc98]) are very detailed models, whose intended use is to be taken “as is” and
serve for the enterprise under consideration. The knowledge they provide is at the lowest
level of abstraction, aimed at being reused without modifications. This is consistent with
the perception that an enterprise has to adapt itself to the model (or the software it
underlies) rather than the other way around. Nevertheless, studies reported in the
literature hardly show evidence that such full adoption is applied in practice. Daneva
[Da99] measured the level of reuse of the SAP reference models in a number of case
studies belonging to different market segments, and indicated that full reuse was not
achieved in any of them, although in some cases the level of reuse was remarkably high.
The parts that were not fully reused were either modified or designed from scratch.
However, no guidance is provided in the model for performing such operations.

An example of this category is Scheer’s model [Sc99], which includes a number of
views besides the process model depicted as Event-driven Process Chains (EPC). It aims
at representing the entire set of possible solutions. It implicitly indicates mandatory and
optional parts by using logical relations (and, or, exclusive or). However, as indicated by
Rosemann and Van der Aalst [RA05], these relations may represent run-time choices as
well as design decisions.

52

Reuse by assembly: Some reference models (e.g., DEM [Va98]) provide detailed
“building blocks”, whose intended use is by selection and assembly. The knowledge
captured in these models is, similarly to the former type, at the lowest abstraction level.
However, they provide the enterprise with some degree of flexibility, facilitated by the
possibility of selecting the appropriate building blocks from a variety of such available.
As suggested by the reuse by adoption approach, in this approach the enterprise is free to
modify parts or design parts if none of the existing satisfies its need, but these actions are
not guided by the model. The DEM model, similarly to Scheer’s model, includes a
number of views, but here processes are specified as Petri-Nets. It was constructed to be
used within the Baan ERP system, and accompanied by an infrastructure that enables its
reuse as part of the ERP implementation process. The infrastructure includes a repository
in which the model parts reside, and a rule base aimed at completeness verification and
at keeping consistency among the different views of the model. However, the rules that
address the composition of the model parts are not applicable to changes made in the
details of these parts.

Reuse by specialization: In contrast to the first two types of reuse, models whose
intended use is through specialization provide knowledge at a high level of abstraction.
The main advantages of reuse by specialization are twofold. First, the knowledge
captured in the model serves as a basis for constructing the specific model of an
enterprise without imposing a detailed solution. Second, generic models may not be
completely domain-specific, thus they allow reusing knowledge across domains that
share common characteristics. An example of a model based on this approach is the
Supply Chain Operations Reference (SCOR) [St01] model, which outlines supply chain
operations and management processes, grouped according to logistic typologies and
main process types involved (e.g., source, make, deliver). SCOR states that in order to
become operational, the processes need to be specialized and a model of a lower level of
abstraction must be constructed, according to the practices of the specific enterprise.
However, the model does not include any mechanism that supports or guides such
specialization (e.g., by indication about mandatory or optional steps).

Reuse by customization: This approach has been recently presented by Rosemann and
Van der Aalst [RA05], and is not applied by an existing reference model yet. It is
specifically targeted at reference models attached to enterprise systems, whose
application is part of the implementation of the system in an enterprise. The approach is
motivated by the limitations of the reuse-by-adoption approach, where a low-level model
specifies all the possible options and variants (or some separate models need to be
consolidated). Such model does not distinguish design decisions from run-time
decisions, mandatory from optional activities, and possible dependencies among design
decisions. The model suggested by [RA05] is at a low abstraction level, employing an
extended EPC (Configurable-EPC), where configuration possibilities as well as
dependencies are explicitly specified. Specifying configuration possibilities facilitates
the adoption of parts of the detailed model without altering its level of abstraction. As
this is a recent development, the approach still does not meet many configuration
challenges, such as mandatory vs. optional decisions, different levels of configuration
decisions, inter-process dependencies, and more.

53

The configuration possibilities are derived from the functionality of the enterprise
system to be implemented. The same rationale may be applicable to reference models
that are not software-related, but configuration possibilities are less straightforward to
identify in this situation.

2.2 Domain Engineering

As the variability of information and software systems has increased, the need for an
engineering discipline concerned with building reusable assets (such as specification
sets, reference models, software patterns and components) on one hand and representing
and managing knowledge in specific domains on the other hand, has become crucial.
This discipline, called domain engineering [Cl02], supports the notion of a domain,
defined as a set of applications that use common concepts for describing requirements,
problems, and capabilities. The purpose of domain engineering is to identify, model,
construct, catalog, and disseminate a set of software or business artifacts that can be
applied to existing and future systems in a particular domain. As such, it is considered an
important type of software reuse, verification, validation, and knowledge representation
[Me97].

A sub field of domain engineering is Domain analysis which identifies a domain and
captures its ontology. It should specify the basic elements of the domain, organize an
understanding of the relationships among these elements, and represent this
understanding in a useful way. Similarly to the process reference models area, domain
analysis relates to different types of reuse. We classify the domain analysis methods and
techniques into two categories: single-level and two-level domain analysis approaches.

In the single level domain analysis approaches, the domain knowledge is defined by
domain components, libraries, or architectures. These domain artifacts are reused in an
application as they are, but can be modified to support the particular requirements at
hand. The Draco approach [Ne89], for example, organizes software construction
knowledge into several related domains, each of which encapsulates the requirements
and different implementations of a collection of similar systems. Meekel et al. [Me97]
propose a domain analysis process that is based on multiple views. They used Object
Modeling Technique (OMT) [Ru91] to produce a domain-specific framework and
components. The feature-oriented approach as applied by Gomaa and Kerschberg
[GK95] and FODA [Ka90] suggests that a system specification will be derived by
tailoring the domain model according to the features desired in the specific system. That
is, a specific system uses the reusable architecture and instantiates a sub-set of features
from the domain model.

In the two-level domain analysis approaches, connection is made between a domain
model and its usage in an application model. Contrary to the single-level domain
analysis approaches, the domain and application models in the two-level domain analysis
approaches remain separate, while validation rules between them are defined. These
validation rules enable avoiding syntactic and semantic mistakes during the initial stages
of application development, reducing development time and improving system quality.

54

These approaches mainly utilize the metamodel concepts in which the domain model is
the metamodel and the application model is the derived model that correspond to the
metamodel. Examples for such approaches are the studies by Schleicher and Westfechtel
[SW01], Gomma and Eonsuk-Shin [GE02], and the Generic Modeling Environment
(GME) [No99], which also uses the Object Constraint Language (OCL) [WK98] to
specify additional constraints. These approaches lack the support for dynamic constraint
specifications and are limited in their accessibility as they use different jargons within
the two layers.

Considering the reuse approaches of business process reference models and the domain
analysis approaches, the following analogy can be made. The reuse by adoption, by
assembly, and by customization approaches are analogous to the single level domain
analysis approach, in which an existing element can be reused or modified when applied
to a specific application. The reuse by specialization is akin to the two-level domain
analysis approach. Yet, the reuse by specialization approach provides only the high-level
model, and does not entail mechanisms for validating the specialized model that is
created. In this paper we explicitly address that issue.

3 The Application-based Domain Modeling Approach

Being influenced by the classical framework for metamodeling presented in [OM03], the
Application-based DOmain Modeling (ADOM) approach is based on a three layered
architecture: application, domain, and language. The application layer, which
corresponds to the model layer (M1), consists of models of particular enterprises,
including their structure (data) and behavior (business processes). The language layer,
which corresponds to the metamodel layer (M2), includes metamodels of modeling
languages, such as UML, EPC, OMT, etc. The intermediate domain layer, which can be
labeled M1.5, consists of specifications of various domains; in particular it can include
reference models. The ADOM approach enforces constraints among the different layers;
in particular, the domain layer (the reference models) enforces constraints on the
application layer (the specific enterprise process models).

Figure 1 depicts the architecture of the ADOM approach in a specific case study. The
application layer in this figure includes process models of three organizations: a
chocolate manufacturer, a computer store, and a software development company. These
applications belong to different logistic typologies. The chocolate manufacturer, which
sells special kinds of chocolate from its stock and produces chocolate to renew its stock,
is classified as a make-to-stock typology. The computer store, which composes different
off-the-shelf parts into computers that meet customer needs, is classified as an assemble-
to-order typology. Finally, the software development company, which analyzes, designs,
implements, tests, and maintains software products according to a customer's Request
For Proposal (RFP), is classified as an engineer-to-order typology. Although different,
the aforementioned applications deal with similar business processes, such as sell
products and buy raw materials.

55

The domain layer in Figure 1 includes two generic process models, one for selling and
the other for buying. These process reference models provide guidelines for instantiating
the business processes in particular enterprise applications, such as the chocolate
manufacturer, the computer store, and the software development company. The language
layer in this example will be limited to UML. In this paper we chose UML activity
diagrams as a language for process modeling in ADOM for the following reasons. First,
UML is the de-facto standard modeling language. Second, in order to specify process
reference models we need tools for expressing activities, triggers, sequences,
synchronization points, conditions, etc. UML activity diagrams include these
capabilities. Third, using a stable notation, such as UML, benefits from the maturity of
its development environment, including its CASE tools.

In order to support the variability of enterprise business processes, we utilize the UML
built-in stereotype mechanism. As defined in [OU03], a stereotype is a kind of a model
element whose information content and form are the same as the basic model element,
but its meaning and usage are different. In the domain layer, a new "multiplicity"
stereotype family is introduced to represent how many times a model element can appear
in a particular application. In the application layer, any element (class, association,
activity, state, etc.) is stereotyped according to the elements declared and constrained in
the domain layer. A model element in an application model must preserve the relations
of its stereotypes in the relevant domain model.

Figure 1. The Application-based DOmain Modeling (ADOM) architecture

Section 4 explains and demonstrates the use of ADOM for constructing a process
reference model, while reusing it for creating enterprise-specific process models is
explained and demonstrated in Section 5.

 M1.5: Domain
Layer

M2:
Language Layer

Chocolate
Manufacturer

Computer Store Software Development
Company

Sell Products Buy Raw
Materials

UML

M1: Application Layer

56

4 Constructing Reference Models in ADOM

The reference models are constructed in the domain layer using the language vocabulary
and constraints. In our case, the vocabulary of activity diagrams includes activities,
transitions, conditions, synchronization points, etc. The multiplicity of these elements
can be constrained using stereotypes. The main multiplicity groups are: (1) an optional
application element, denoted as <<0..n>>, meaning that this element can be
"instantiated" any number of times in an application model, (2) an optional single
application element, denoted as <<0..1>>, meaning that at most one application element
can be classified as the domain element, (3) a mandatory application class, denoted as
<<1..n>>, meaning that this element should be "instantiated" at least once in any
application model, and (4) a mandatory single application element, which is the default
(no multiplicity is indicated) and is equivalent to <<1..1>>, meaning that exactly one
application element can be classified as the domain element. Other adjusted groups,
denoted as <<min..max>>, are also legal.

Figure 2 is an activity diagram that depicts the Sell process at the reference model level.
The process begins with an optional application activity, called Quote Activity. This
activity can be further elaborated into one or more Quote Preparation activities,
followed by an optional single Quote Monitoring activity. The reference model also
allows dependencies among Quote Preparation activities, as indicated by the optional
self link of Quote Preparation. A Quote Preparation activity may be followed by
another Quote Preparation activity or a Quote Monitoring activity or can directly
proceed to the branch denoting the evaluation of the quote. If the quote is not approved,
the Sell process failed. If the quote is approved or a customer order is received as an
external event, the mandatory single Insert Order activity is executed. Note that since
the Quote Activity is optional the process may simply start by receiving a customer
order. Upon completion of the Insert Order activity, an optional Validate
Configuration activity is performed in order to check the product feasibility. This
activity is very useful for an assemble-to-order typology. Then a one or more Check
Availability activities are performed to check the availability of raw materials, products,
resources, etc.

57

Figure 2. The reference (domain) model of the Sell process

Quote Activi ty

<<0..n>>

Quote Preparation

<<1..n>>

Quote Monitoring

<<0..1>>

Quote Preparation

<<1..n>>

<<0..n>>

Quote Monitoring

<<0..1>>

Insert Order

[quote approved]

sel l process fai led

[quote not approved]

 : External Event

[customer order received]

Check Avai labili ty

<<1..n>>

Check Avai labi li ty &

Determine Delivery Date

Reserve Element
Receive Element

<<0....

Check Avai labi li ty &

Determine Delivery Date

Reserve Element
Receive Element

<<0....

<<0..n>>

{or}

Validate

Configuration

<<0....

Payment

<<1..n>>

sell process completed

 : Product

[ready]

Delivery

<<1..n>>

[not available && delivery date agreed]
[avai lable || delivery date agreed]

58

The Check Availability activity consists of Check Availability & Determine Delivery
Date activity, followed by a Reserve Element activity in case the item is available or
the delivery date is agreed (but the element is not available), and optional concurrent
Receive Element activities in case the item is not available, but the delivery date is
agreed. Note that the reference model does not specify action when delivery date is not
agreed. This illustrates the fact that the model includes only generic enough information.
Cases that are not specified in the model can be added specifically when the model is
specialized. The reference model also allows dependencies among Check Availability
activities, as indicated by the optional self link of the Check Availability activity. Thus,
a Check Availability activity may be followed by another Check Availability activity,
or may continue to another stage (i.e., Delivery and Payment). The Check Availability
activity should be followed by at least one Delivery activity and at least one Payment
activity. Yet, the beginning of these activities is subject to the condition that the Product
is ready. Upon completion of all Delivery and Payment activities the Sell process
successfully completes.

5 Instantiating a Reference Model in ADOM

An enterprise-specific process model builds on the knowledge captured in a reference
(domain) model and uses it as a validation template. All the constraints enforced by the
reference model should be applied to any process (application) model of that domain. In
order to achieve this goal, any element (class, association, activity, state, etc.) in the
application model is classified and stereotyped according to the elements declared in the
reference model. Particularly, when constructing a specialization of the reference model,
one should create a mapping from the domain elements to the enterprise elements and
backwards.

In the rest of this section we will show how the reference model of the Sell process
shown in Figure 2 fits the chocolate manufacturer example.

59

As noted, the chocolate manufacturer sells special kinds of chocolate from stock. Figure
3 is a UML activity diagram that describes the Sell process in this organization. This
process is triggered by an external event in which the customer order is received (either
by phone, fax, email, or personally). As a consequence, an activity of inserting an order,
called Order Chocolate, begins. Note that no quote activity is performed here, and no
configuration validation, as this is a standard product supplied from stock. The next step
is Check Chocolate Availability. This activity is zoomed into its sub-activities: first, the
chocolate availability is checked, while the delivery date is determined. The delivery
date might be immediately or any time in the future that is agreed between the customer
and the seller. The possibility of future delivery dates enables the seller to receive
chocolate unavailable in stock from production without canceling the customer order. If
the required chocolate is available or the delivery date is agreed (in case the chocolate is
not available immediately), the amount of chocolate ordered by the customer is reserved,
in order to avoid "overbooking" of the chocolate in stock. If the chocolate is not
available, but the delivery date was agreed, Receive Chocolate for Order should be
executed for the process to proceed further. The process continues only if the product,
i.e., the ordered chocolate, is ready. In this case two parallel activity sets occur: one
handles the payment, while the other deals with the delivery. The payment activities
include Issue Invoice and Receive Payment which are executed in this order. The
delivery activities deal with three types of shipment. In the first shipment type,
"shipment by customer", the only activity that is needed is Prepare Delivery by
Customer Documents. In the second shipment type, "shipment by manufacturer for
export", three activities are sequentially executed: Reserve Overseas Carrier, Prepare
Export Documents, and Load Containers. In the third shipment type, "shipment by
manufacturer for local needs", only two activities are needed: Prepare Shipment
Document and Load Trucks. Finally, after the payment and delivery activities are
finished, the Sell process is (successfully) completed.

Notice that the Sell process of the chocolate manufacturer follows the reference model of
a general Sell process, shown in Figure 2. As noted, in this case, the quote activity and
validate configuration processes are redundant and, hence, do not appear in the
application model (Figure 3). On the other hand, the delivery and payment activities are
refined as allowed in the reference model by the multiplicity constraints of these
activities. The reference model also does not forbid possible dependencies among these
activities, as actually exist in the chocolate manufacturer case study. The chocolate
production, which is done in the background, is not part of the selling process and,
hence, does not appear in the reference model neither in the application model of the
chocolate manufacturer case study.

The reference model of the Sell process was also applied to the other two examples
mentioned above, the computer store (assemble-to-order) and the software development
company (engineer-to-order). Due to space limitations, we will not go into the details of
these models. Nevertheless, it is important to note that despite the difference in the focus
and nature of the Sell process in the three organizations, the three specific models that
were created follow the reference model in Figure 2 and comply with it.

60

sales process completed

«Insert Order»

Order Chocolate

«Check Availability»

Check Chocolate Availability

«Check Availability & Determine Delivery Date»

Check Chocolate Availability & Determine Delivery

Date

«Reserve Element»

Reserve Chocolate for

Order

«Receive Element»

Receive Chocolate for

Order

«Delivery»

Prepare Delivery by

Customer Documents

«Payment»

Issue Invoice

«Payment»

Receive Payment

«Delivery»

Reserve

Overseas Carrier

«Delivery»

Prepare Shipment

Documents

«Delivery»

Prepare Export

Documents

«Delivery»

Load Containers

«Delivery»

Load Trucks

External Event

[customer order received]

[shipment by customer][shipment by manufacturer]

[export][local]

[availlable || delivery date agreed][!availlable && delivery date agreed]

Figure 3. The Sell process in the chocolate manufacturer

 : Chocolate

<<Product>>

<<ready>> [ready]

61

6 Summary and Future Work

Reference models are models whose aim is to capture domain knowledge and assist in
the design of enterprise specific processes. However, while much attention has been
given to the content of these models, the actual process of reusing this knowledge has
not been extensively addressed. This paper proposes to utilize the ADOM approach,
whose roots are in the domain engineering discipline, as a platform for constructing
reference models and instantiating them in a specific enterprise. The benefits of utilizing
the ADOM approach for the purpose of specifying and applying reference models are
twofold. First, while applying a specialization-based reuse approach, ADOM’s reuse
process is more powerful than the ones employed by existing reference models. The
uniqueness of the proposed approach, as compared to other reuse-by-specialization
approaches, is that the reference model provides a validation template for its
instantiations. This can be achieved, for example, by utilizing the stereotype mechanism
of UML. In the paper we discussed the possibilities of constructing different
specializations of the reference model, where each has its own specific features, yet they
are all based on the reference model and comply with it. Second, although demonstrated
to UML, ADOM is a generic approach that can be applied with various modeling
languages. This enables us to extend the model to other views of an enterprise, such as
data structure, while maintaining the same logic as demonstrated on process models.

In the future, we plan to examine the integration of various enterprise model views and
their counterparts in the related modeling language (e.g., UML). In addition, we intend
to experiment the utilization of the ADOM approach to the business process reference
models in real enterprises and explore the implications of using the proposed approach.
For this purpose, we plan to develop a CASE tool which will guide the developers in
constructing reference models and instantiating them in particular enterprises.

References

[Cl02] Cleaveland, C. “Domain Engineering”, http://craigc.com/cs/de.html, 2002.
[CL99] Curran, T. A. and Ladd, A., SAP R/3 Business Blueprint: Understanding Enterprise

Supply Chain Management, 2nd edition, Prentice-Hall, Englewood Cliffs, NJ, 1999.
[Da99] Daneva, M., Measuring Reuse in SAP Requirements: a Model-based Approach. In

SSR’99, Proceedings of the Fifth Symposium on Software Reusability, ACM Press. New
York, pp.141-150, 1999.

[FL03] Fettke, P. and Loos, P. “Classification of Reference Models – A Methodology and its
Application”, Information Systems and e-Business Management, 1(1), p. 35-53, 2003.

[FL05] Fettke, P. and Loos, P. “Ontological Analysis of Reference Models”, In: Green, P. and
Rosemann, M. (eds), Business Systems Analysis with Ontologies, p. 56-81, Idea Group,
2005.

[GK95] Gomaa, E. and Kerschberg, L. “Domain Modeling for Software Reuse and Evolution”,
Proceedings of Computer Assisted Software Engineering Workshop (CASE 95), 1995.

[GE02] Gomma, H. and Eonsuk-Shin, M. “Multiple-View Meta-Modeling of Software Product
Lines”, Proceedings of the Eighth IEEE International Confrerence on Engineering of
Complex Computer Systems, 2002.

62

[Ka90] Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A. “Feature-Oriented Domain
Analysis (FODA) Feasibility Study”, CMU/SEI-90-TR-021 ADA235785, 1990.

[Me97] Meekel, J., Horton, T. B., France, R. B., Mellone, C., and Dalvi, S. “From domain models
to architecture frameworks”, Proceedings of the 1997 symposium on Software reusability,
pp. 75-80, 1997.

[MZ00] Misic, V. B. and Zhao, J. L. “Evaluating the Quality of Reference Models”, Proceedings
of ER 2000 – 19th Conference on Conceptual Modeling, p. 484-498, Springer-Verlag,
Berlin, 2000.

[Ne89] Neighbors, J. “Draco: A Method for Engineering Reusable Software Systems”, in T.
Biggerstaff and A. Perlis. Software Reusability. Volume I: Concepts and Models. ACM
Press, Frontier Series, Addison-Wesley, Reading, pp. 295-319, 1989.

[No99] Nordstrom, G., Sztipanovits, J., Karsai, G. and Ledeczi, A. “Metamodeling - Rapid Design
and Evolution of Domain-Specific Modeling Environments”, Proceedings of the IEEE
Sixth Symposium on Engineering Computer-Based Systems (ECBS), pp. 68-74, 1999.

[OM03] OMG-MOF, “Meta-Object Facility (MOF™)”, version 1.4, 2003.
[OU03] OMG-UML, “The Unified Modeling Language (UML™)”, version 1.5, 2003.
[RS04] Reinhartz-Berger, I. and Sturm, A., “Behavioral Domain Analysis – The Application-

based Domain Modeling Approach”, the 7th International Conference on the Unified
Modeling Language (UML'2004), Lecture Notes in Computer Science 3273, pp. 410-424,
2004.

[RA05] Rosemann, M. and Aalst van der, W. M P. “A Configurable Reference Modeling
Language”, Information Systems (forthcoming).

[Ru91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. Object-Oriented
Modeling and Design, Prentice-Hall International, Inc., Englewood Cliffs, New Jersey,
1991.

[Sc98] Scheer, A. W, Business Process Engineering: Reference Models for Industrial Enterprises,
Springer Berlin, 1998.

[Sc99] Scheer, A. W., ARIS – Business Process Frameworks, Springer, Berlin, 1999.
[SW01] Schleicher, A. and Westfechtel, B. “Beyond Stereotyping: Metamodeling Approaches for

the UML”, Proceedings of the 34th Annual Hawaii International Conference on System
Sciences, pp. 1243-1252, 2001.

[SR98] Schuette, R., and Rotthowe, T. “The Guidelines of Modeling – an Approach to Enhance
the Quality in Information Models”, Proceedings of ER 1998 – 17th International
Conference on Conceptual Modeling, p. 240-254, Springer-Verlag, Berlin, 1998.

[St01] Stephens S., “Supply Chain Operations Reference Model Version 5.0: a New Tool to
Improve Supply Chain Efficiency and Achieve Best Practice”, Information Systems
Frontiers, Vol. 3 No. 4, pp. 471-476, 2001.

[SR04] Sturm, A. and Reinhartz-Berger, I., “Applying the Application-based Domain Modeling
Approach to UML Structural Views”, the 23rd International Conference on Conceptual
Modeling (ER'2004), Lecture Notes in Computer Science 3288, pp. 766-779, 2004.

[Va98] Van Es, R., Dynamic Enterprise Innovation, Baan Business Innovation B.V., The
Netherlands, 1998.

[WK98] Warmer, J. and Kleppe, A. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley, 1998.

63

