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Abstract: This paper proposes a method for palm bimodal biometric feature (vein
and crease pattern) acquisition from a single RGB image. Typical bimodal biometric
systems require combining infrared and visible images for this task. We use a single
CMOS color sensor and a specific illumination comprising of two wavelengths to ac-
quire the image. As a result each biometric modality is more pronounced in its own
color channel. The image is processed by applying adapted matched filters with non-
linear modifications. Performance of the proposed method is evaluated against feature
separation with optical band-pass and band-stop approach on a database of 64 people.
The results show the average true positive rate is 70.6 % for vein detection and 64.7 %
for crease detection, whereas in 14.8 % and 9.29 % of the cases feature of wrong
modality is detected.

1 Introduction

It is difficult to spoof human palm blood vessel structure as biometric feature because one

can’t leave his or her “blood vessel print” on a surface, unlike fingerprints. This has moti-

vated studies and manufacturing of vascular biometric systems [WESS05]. More than one

biometric feature (multimodal biometry) is used to increase biometric system’s level of se-

curity. There are such multimodal biometric systems that use palm blood vessel structure

and palm prints by analyzing two images in visible and infrared light. The disadvantage of

these systems is that two images must be acquired: either sequentially, using mechanically-

switched optical filters [PFR+13], or simultaneously, using two image sensors [MCJ10].

This is because each biometric parameter requires different light spectrum — palm crease

images are obtainable at 390 · · · 700 nm while blood vessel images require near-infrared

light spectrum — wavelengths longer than 750 nm [SB99].

In this paper we propose a method for palm biometric features of two modalities (vein pat-

tern and crease structure) extraction of a single image. We use spectral properties of the

chosen biometric features and acquire images where the features of each modality appear

more pronounced in separate color channels. This is described in section 2. The acquired

images are then digitally processed. The state of the art methods for palm feature extrac-

tion employ contrast enhancement and binarization [AEHS13]. However, these methods

are not suitable for the proposed task. Therefore, we use filters developed by Pudzs et al.

[PGF11], and adapt them to extract biometric features of each modality separately, as de-
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scribed in section 4. In sections 5 and 6 the proposed approach is validated experimentally

— we measure how often can crease and vein features be distinguished.

2 Palm feature spectral separation

Each color channel of a typical CMOS sensor with RGB color filter array (Bayer filter)

is sensitive to near-infrared light in addition to its sensitivity in the corresponding light

spectrum [Tru12]. In this section we show how to exploit this property to pronounce
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Figure 1: Pixel intensity

distribution in color chan-

nels (example)

(a) red channel (b) blue channel

Figure 2: Palm image fragment in proposed lighting conditions

(example; contrast was enhanced for visualization purposes)

features of each modality in different color channel. The choice of RGB channels de-

pends on the spectrum sensitivity of the used image sensor. In our model we use Aptina

MT9V032C12STC ES RGB image sensor because it complies with our demanded quan-

tum efficiency [Apt11] in relevant spectrum bands and it is widely available, and we use

R and B color channels for vein and crease features respectively. For any other image

acquisition system there might be different considerations over which color channels to

use, depending on the sensor and illumination device, but the general technique remains

the same. Since all color channels of the image sensor have similar sensitivity to near-

infrared spectrum, when palm is illuminated with near-infrared light, information from

this wavelength (vein pattern) is recorded in all 3 color channels. An example of pixel in-

tensity distribution in the RGB color channels can be observed in figure 1a. When palm is

illuminated with monochromatic visible light (in our case — blue), information from this

wavelength (crease pattern) is recorded mostly in the corresponding RGB channel — an

example of pixel intensity distribution can be observed in figure 1b. Therefore, when both

of the mentioned light sources are simultaneously applied with different intensities, differ-

ent color channels (in our example — R and B) will contain information mostly observed
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in each light separately. An example of pixel intensity distribution for dichromatic light

can be observed in figure 1c. Thus, palm veins will be mostly visible in red channel, while

palm crease structure — mostly in blue channel. The red channel was selected for palm

vein information recording because it has the highest sensitivity in near-infrared spectrum

between all color channels. Blue channel was chosen for crease information recording be-

cause of its smallest overlap with the red channel in visible light spectrum band [Apt11].

Our experiments with images verified that it is possible to find a pair of simultaneous il-

lumination intensities to achieve the desired effect. Such illumination used for captured

image, fragment of which is shown in figure 2. Fig. 2a shows the red channel pixels, while

2b shows the blue channel pixels. Notice that the former appears to contain visually more

expressed veins and the latter — more expressed crease, however, this is not sufficient for

bi-modal feature extraction.

3 Palm crease and blood vessel model

This section discusses the methods for distinguishing between creases and veins in palm

images. The apparent differences of these features are their visual appearance which will

(a) Palm image fragment with

manually labeled veins

(b) Palm image fragment with

manually labeled creases

(c) Vein CF, taken from 3a

(d) Crease CF, taken from 3b

Figure 3: An example of vein/crease CF acquisition (contrast was enhanced in all images

for visualization purposes)

be analyzed in this section. Therefore we have created a database of palm images that are

acquired in the mentioned lighting conditions, and manually labeled distinct fragments of

palm features (fig. 3a, 3b). Selected feature fragments are straightened and concatenated

together to form a continuous feature (CF) — fig. 3c, 3d. From these statistics crease and

blood vessel average CF models (ACFM) were obtained for each RGB color channel, fig.

4a and 4b respectively. To display each feature RGB ACFM in one picture, it is assumed

that each feature’s color channel’s ambient pixels have value 1. As intended, palm blood

vessels appear more strongly (darker) in red channel, but palm crease — in blue channel,

but both are also seen in other color channels with lower magnitude. Also the claim that

these biometric features have different width was confirmed — typical marked palm blood
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vessel width in red channel is greater than 10 pixels, but palm ridge width is approximately

3 · · · 6 pixels (in captured images with system that is being developed, placing palm at

about the same distance). When placing palm in a different distance from the camera

feature width might be different, but their ratio shall remain the same. These appear to be

sufficient differences for palm blood vessels and crease separation using matched filters.
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Figure 4: Average palm vein and crease ACFM for each color channel of RGB image

4 Filter development

Both feature detection filters must extract lines with certain thickness, therefore in sec. 4.1

and 4.2 we are focusing on development of a universal filter for this purpose. Development

of such matched filter (MF) is discussed using a benchmark test image — fig. 6a. The goal

is to extract lines with certain width as defined by the outlined region in the image. As

every real palm image would, this image contains narrower and wider lines as well as

gradients and patterns that are considered as noise.

Subsequently in sections 4.3 and 4.4 we will discuss filter parameters and modifications

that are distinct for vein and crease detection.

4.1 Filter structure and its response

The filter structure and its response is based on the NH-CMF (Non-Halo Complex Matched

Filter) introduced in [PGF11]. The idea behind the NH-CMF is that the filter kernel (fig.

5a) is matched with a line-like object (LLO) one wants to extract. The kernel is rotated
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in angular interval ϕn ∈ [0, π), using uniformly distributed N rotations (e.g. N = 4).

Filter response RNH at particular point (x0, y0) with kernel rotation angle ϕn is defined

as:

RNH(x0, y0, ϕn)
= ramp





∫∫

D

f(x, y) ·M(x− x0, y − y0;ϕn) · dxdy



 (1)

where f(x, y) is the image being filtered and D is the overlay area of the kernel M , and

ramp (x) = x+|x|
2 . The kernel is constructed so that it has no mean value, meaning

zero response for mean component of f (x, y), within D. Negative responses for each ϕn

are converted to 0 because such responses indicate that the particular image region at the

given angle ϕn does not represent requested LLO. Each point’s (x0, y0) N responses are

combined using complex numbers (c.f. [PGF11], section V.). Without dwelling deeper in

NH-CMF we describe the approach to adapt the filter for the required task (selective line

detection). Filter kernel can be divided into segments without altering its size or principle

of operation — fig. 5b. It is divided into 10 segments placed in 2 columns (NB = 2), to

perform line continuity test, and 5 rows (NA = 5), to determine line width (the reason for

such segmentation is discussed in corresponding sub-sections 4.2.1 and 4.2.2). Segments

are labeled as Aa Bb for convenience (refer to fig. 5b). Each mask segment’s Aa Bb

correlation S(a b) with an underlying image fragment is calculated as:

S(a b) (x0, y0, ϕn) =

∫∫

Aa Bb

f(x, y) ·M(x− x0, y − y0;ϕn) · dxdy . (2)

Hereafter in most equations variables x0, y0, ϕn are left out. Filter response remains the

same, but now equation (1) can be rewritten using segment responses S(a b):

RNH = ramp

[

2
∑

b=1

(

3 ·
(

S(1 b) + S(5 b)

)

− 2 ·
4

∑

a=2

S(a b)

)]

. (3)

Such NH-CMF response RNH on an artificial test image (fig. 6a) can be seen in fig. 6b.

In the next subsections we iteratively improve the quality of NH-CMF result (fig. 6b) for

the specified task by removing unwanted responses (denoted as artifacts). Therefore, our

proposed filter consists of a non-linear NH-CMF with a modified kernel and an additional

calculation module for artifact removal.

4.2 Artifact removal

Various objects, other than necessary features, processed with NH-CMF will give non-zero

filter output responses because their shape is remotely similar to object with which filter

is matched — artifacts. Artifact removal is performed at each kernel’s rotation angle ϕn,

before responses are combined for each individual image point — (x0, y0). Non-Artifact

check variable C is defined as:

C = CC · CW · CG1 · CG2 , (4)
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(a) NH-CMF filter kernel

([PGF11])

(b) The proposed division of NH-

CMF filter kernel into 10 segments

Figure 5: NH-CMF filter kernel and its proposed division into 10 segments

(a) Original im-

age

(b) RNH (c) RNH · CC (d) RNH · CC ·

CW

(e) RNH · CC ·

CW · CG1

(f) RNH · C

Figure 6: Test image and filtration results, the processed images (6b-6f) are inverted

(darker region represents a higher correlation with the filter kernel), black picture borders

are not part of the data, but added for convenience
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and it can take values 0 and 1: 0 when given filter output value can be recognized as

artifact and 1 — otherwise. Its constituent variables CC, CW, CG1 and CG2 can also take

values 0 and 1, and are discussed in the following chapters. Proposed filter response for

one kernel’s rotation angle is:

Rfinal(x0, y0, ϕn) = RNH(x0, y0, ϕn) · C (x0, y0, ϕn) . (5)

4.2.1 Line continuity

As it can be seen in marked regions in fig. 6b, the filter has a non-zero correlation around

lines and gradients. Such response emerges when kernel’s rotation angle ϕn forms a cer-

tain oblique angle ∆ with LLO’s direction so that kernel only partly overlays LLO. Such

filter responses can be detected by dividing the filter kernel in two columns (two is the

minimum number of columns, using larger number will also examine whether the line

is continuous in its intermediate sections) — in fig. 5b these 2 columns are formed by

segments AaB1 and AaB2, perceiving each column Bb as a separate matched filter.

(∀b ∈ {1, 2}) RCb
= ramp

[

3 ·
(

S(1 b) + S(5 b)

)

−

4
∑

a=2

S(a b)

]

(6)

We are interested only in binary operator CC, therefore line continuity test can be per-

formed:

CC = H [min (RCb
)] , (7)

where H function is defined as follows:

H =

{

0, if x $ 0

1, if x > 0 .
(8)

The performance of NH-CMF with added line continuity check (with a response restricted

by R = RNH · CC) on a test image fig. 6a can be seen in 6c. Notice that mentioned

artifacts have been partially removed.

4.2.2 Line width

Specified line width is one of the key features for crease / vein separation as discussed in

section 3. Although filter is matched with thick lines, it can be noticed that filter output

response depends also on kernel’s geometry, not only the input signal, as marked in fig. 6c.

If line is several times thinner than the kernel’s dark region, there are going to be multiple

x coordinates (xn · · ·xm, y0) (in case of a vertical line) where the filter kernel’s center

can be placed in order to obtain positive output response. Such thin line in NH-CMF out-

put will result in a positive response region whose width is approximately equivalent to

kernel’s negative region width.

To allow detect only lines with a specific width (greater than few pixels) the line compati-

bility with filter kernel can be verified in multiple line’s cross section points. This can be
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achieved by dividing kernel’s dark region into rows. Lets look at column B1. It consists

of 2 positive segments (A1B1 and A5B1) and kernel’s dark (negative) part is divided into

3 segments — A2B1 to A4B1 (2 is the minimum number of segments but 3 segments

are chosen experimentally. The maximum number of such segments depends on line’s

width in pixels.). Whether line has allowed thickness value, can be determined by check-

ing if under each negative filter kernel’s segment is a “part of line” carrying out a “partial

matching”. It can be done as follows:

(∀a ∈ {2, 3, 4}) (∀b ∈ {1, 2}) RWa, b
= ramp

[

S(1 b) + S(5 b) − 2 · S(a b)

]

(9)

As before, we need to obtain binary CW merging all 6 individual segment results: RWa, b
:

CW = H
[

min
(

RWa, b

)]

. (10)

Response obtained using line continuity and width checks (R = RNH · CC · CW) can be

seen in fig. 6d.

4.2.3 Gradient checks

So far, all viewed filters detect gradients along with lines (hence the term LLO was

used). When performing line continuity check, each kernel column’s negative segment

S(2 b) · · ·S(4 b) is viewed in conjunction with both positive side segments — S(1 b) and

S(5 b) to determine if there is an LLO. When filter kernel is located on top of a gradient,

alongside it, filter result (at the given angle) will be non-zero because partially matched

filter requirements will be met. However, following operation results for ∀b, a = 1 and

a = 5 simultaneously won’t be non-zero:

(∀a ∈ {1, 5}) (∀b ∈ {1, 2}) RG1a, b
= ramp

[

3 · S(a b) −
4

∑

i=2

S(i b)

]

(11)

because, in case of a gradient, under one of these segment combinations a reverse gradient

or a constant image pixel values will be located. The gradient test — G1 can be performed

to both filter columns by calculating:

CG1 = H
[

min
(

RG1a, b

)]

. (12)

NH-CMF output result with added CG1 check can be seen in fig. 6e — gradient formed

artifacts (marked regions in fig. 6d) have been removed. However, part of the random

artifacts from the marked region in fig. 6e can be classified into groups that have already

been observed in the previous chapters. In order to enhance ability to distinguish valid

signal from them, gradient check G2 is introduced. This test is performed by requesting

each kernel’s negative segments ((∀a ∈ {2, 3, 4}) , (∀b ∈ {1, 2})) to form a positive result

with its corresponding positive side segments as follows:

(∀a ∈ {2, 3, 4}) (∀b ∈ {1, 2}) RG21a, b
= ramp

(

S(1 b) − S(a b)

)

RG22a, b
= ramp

(

S(5 b) − S(a b)

)

, (13)
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from which it is understandable that gradient check 2 variable CG2 can be defined:

CG2 = H
[

min
(

RG21a, b
, RG22a, b

)]

. (14)

Analyzing equations (13) and (14), it can be seen that condition CG2 includes (or is

stronger than) previously viewed checks — CC, CW and CG1, which means that eq. (4)

can be rewritten as C = CG2. This claim can be verified by observing filter responses in

fig. 6f.

4.3 Blood vessel filter

Figure 7: Input RGB image from

figure 2 processed by the proposed

filters (responses (vein - ", crease -

") are drawn over grayscale image)

So far we examined filter structure for executing the

set of tests for artifact removal — a general case. To

describe specific filters that are matched with previ-

ously defined palm vein and crease width, we in-

troduce variables that describe kernel’s segment di-

mensions — fig. 5b — h - segment length and w -

segment width.

Since veins comply with previously predefined

characteristics as “thick lines”, it is only necessary

to scale the developed filter kernel from fig. 5b —

experimentally determined that optimal results are

achieved if h = 11 and w = 5 for the particular

system. Such filter output response (detected palm

veins) for input RGB image from fig. 2 is shown in

fig. 7, marked as ".

4.4 Crease filter

In section 3 it was shown that marked ridges (only widest and more clearly visible were

marked) are approximately 3 · · · 6 pixels wide. It means that smaller palm prints are 1 · · · 2
pixels wide — not only palm print width difference can be approx. 6×, but also crease

filter kernel’s dark region can’t be divided into multiple rows (for example, one pixel wide

crease can’t be detected in this way). Therefore, it is proposed to use opposite approach to

line width test — instead of checking if line is under kernel’s multiple negative segments

(in line width direction), allowing the line to be only under the central negative segment

in each column — now segment results A2 Bb and A4 Bb (fig. 5b) are ignored — both

calculating RNH and performing artifact checks. This also provides resembling output

magnitude to different width lines. Experiments determined that using such filter for crease

detection, optimal filter parameters are h = 2 and w = 2. Filter output response (detected

palm ridges) for input image 2b is shown in fig. 7, marked as ".
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5 Experiments

In our experiments it is assumed that the optical method (using bandpass/bandstop light

filters), which is used in other biometric systems, provides maximum separation of palm

biometric modalities. Therefore, it is used as a benchmark for evaluation of our proposed

method, which is aimed to accomplish the same task — feature separation. We evaluate

method’s ability to: 1) detect each feature, and 2) distinguish features of different modal-

ities. This is done by calculating the True Positive (TP) and False Positive (FP) detection

rates of proposed filters.

Data

We have acquired a database of 64 people (age 22 — 79) palm images. For each person

30 images were taken in our proposed lighting conditions. In addition, two ground truth

images for each person were acquired using optical filters — one in near-infrared light

to represent pure vein structure, and the other — in blue light representing pure crease

structure.

Evaluation Method

The magnitude of filter response is proportional to the detail’s correlation with the filter

kernel — higher magnitude denotes more expressed palm feature, which is essential for

the feature comparison algorithm. Due to the nature of our feature comparison algorithm,

which takes magnitude of detected features into account, we preserve this information and

use Magnitude-Weighted Histogram (MWH) [PFG13] method for evaluation. The most

convenient way to calculate MWH is to sum filtered images that are properly aligned.

Each MWH pixel contains information of how often and how significantly filter responds

in it.

Experimental Procedure

MWHs were calculated for each modality and every person — a total of 2× 64 MWH im-

ages. For convenience, let us denote MWH images for analyzed person as MWHvein(x, y)
and MWHcrease(x, y). Ground truth images were processed and binarized to acquire

ground truth masks — GTvein(x, y) and GTcrease(x, y). Using these masks we are able

to calculate TP rates of our proposed filters in the following manner:

TPvein =

∑

x

∑

y MWHvein(x, y) ·GTvein(x, y)
∑

x

∑

y MWHvein(x, y)
· 100%, (15a)

TPcrease =

∑

x

∑

y MWHcrease(x, y) ·GTcrease(x, y)
∑

x

∑

y MWHcrease(x, y)
· 100%. (15b)

False Positive rates can be determined from these values by means of subtraction:

FPvein = 100%− TPvein, (16a)

FPcrease = 100%− TPcrease . (16b)

A special case of FP in which we are particularly interested is when a detail of other
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modality is detected. This addends of FP — vein filter detecting ridge (V→C) and vice-
versa (C→V) are determined as follows:

FPV→C =

∑
x

∑
y
MWHvein(x, y) · (1−GTvein(x, y)) ·GTcrease(x, y)

∑
x

∑
y
MWHvein(x, y)

· 100%, (17a)

FPC→V =

∑
x

∑
y
MWHcrease(x, y) · (1−GTcrease(x, y)) ·GTvein(x, y)

∑
x

∑
y
MWHcrease(x, y)

· 100%. (17b)

6 Results and conclusions
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Figure 8: Evaluation results for proposed vein and crease extraction filters

The parameters described in previous section were calculated for every person in the

database and are shown in figure 8. The results show the average TP rate is 70.6 % for vein

detection and 64.7 % for crease detection. Corresponding average FP rates are 29.4 % and

35.3 %, from which 14.8 % and 9.29 % are recognized as detection of feature of wrong

modality. By analyzing these results, we can conclude that on average crease separation

from veins appeared more accurate. This can be explained by the fact that creases were

more clearly visible in the database images (fig. 2 shows an example), and by the fact that

sometimes widest palm creases (e. g. palmar and thenar) appear visually similar to veins

and, therefore, vein filter detected them.

The ground truth images contained local palm deformations due to the different palm fin-

ger placement. Therefore, pixels that were marked as ground truth could disagree with

the acquired MWHs. We did not correct any local image deformations before making the

experiment, however, we acknowledge that it might improve the results.

In this work we have introduced a promising biometric feature acquisition approach that

offers new possibilities for multimodal biometric systems. By following the proposed

procedure for image acquisition and feature extraction it is possible to simplify both —

biometric device and authentication procedure. However, until a working prototype of

the system will be developed, more performance tests should be performed on a broader

database.
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