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Multi-resolution Local Descriptor for 3D Ear Recognition

Iyyakutti Iyappan Ganapathi1 , Syed Sadaf Ali2 , Surya Prakash3

Abstract: Several approaches have shown promising results in human ear recognition. However,
factors such as the pose, illumination, and scaling have an enormous impact on recognition perfor-
mance. 3D models are insensitive to these factors and are found to be better at enhancing recognition
performance with strong geometric information. Low cost 3D data acquisition has also boosted the
research community in recent times to explore more about 3D object recognition. We present a lo-
cal multi-resolution descriptor in this paper to recognize human ears in 3D. For each key-point in
3D ear, a local reference frame (LRF) is constructed. Using multi-radii, we find neighbors at each
key-point and the neighbors obtained from each radius are projected to create a depth image using
the LRF. Further, a descriptor is computed by employing neural network based auto-encoders and
the local statistics of the depth images. The descriptor is used to locate the potential correspondence
matching points in the probe and gallery images for a coarse arrangement, followed by a fine align-
ment to compute the registration error. The obtained registration error is used as the matching score.
The proposed technique is assessed on UND-J2 dataset to demonstrate its effectiveness.

Keywords: 3D Biometrics, 3D Ear, Human Recognition, Authentication, Security, Local Descriptor,
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1 Introduction

There have been numerous attempts in the literature to propose efficient descriptors for
2D and 3D shape recognition. Unlike 2D, 3D descriptors are still in a premature stage as
they face various challenges [Gu13] in recognizing objects in a complex scene or in the
presence of noise, occlusion, and varying mesh resolutions. In general, a local descriptor
is a real vector of m-dimension, constructed using the neighbours’ geometric informa-
tion within a fixed radius for a selected key-point. At the time of recognition, a distance
measurement is used to find the similarity between the real-valued descriptor vectors of
model and test images to find out the correct match. In literature, existing 3D descriptors
are unable to discriminate objects in applications such as biometric recognition, where
comparisons involve extremely comparable shapes such as human ear and face [CB09].

We present a local feature descriptor for 3D ear recognition in this work. The descriptor
is constructed using a neural network based auto-encoder and a derived local statistics.
Further, the descriptor is used to find correspondence points in two 3D ear images. These
points are used to align the ear images coarsely, followed by a fine alignment. The align-
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Fig. 1: Generation of 3D local feature vector using the proposed technique. (a) 3D Ear
model and the neighbours obtained for five distinct radii are shown in different colors, (b)
cropped local neighbours at the feature point for increasing radius from top to bottom, (c)
the depth images obtained from the projections, where the first row from left to right shows
the projections Dr1

x , Dr1
y and Dr1

z ; and the second row shows the projection for the radius r2,
Dr2

x , Dr2
y and Dr2

z , (d) the depth images used as an input to auto-encoder and local statistic
descriptor to generate the feature vector, (e) final feature vector obtained by concatenating
all the vectors computed in (d)

ment error between the ear images is used as a similarity score. The overview of the pro-
posed technique is shown in Fig. 1 and structured as follows. Section 2 reviews 3D ear
recognition techniques and Section 3 discusses the proposed method. Section 4 demon-
strates the experimental results followed by a detailed description of used ear database.
Section 5 compares the performance of the proposed technique with the state-of-the-art
techniques. Finally, the paper concluded in Section 6.

2 Related works

Most of the 3D object recognition methods available in literature work well to discrimi-
nate objects of distinct classes; however, they experience problems while differentiating
two objects belonging to very similar classes, as in the case of biometric applications.
Chen and Bhanu [CB09] utilized local surface patch (LSP) [CB07a] descriptor to find the
corresponding matching points between two ear models. The similarity between two ear
models was shown using the nearest neighbour classifier to reduce the high dimensional
descriptor vector to low dimensional space. [ZCAM11] proposed a novel 3D ear authenti-
cation method based on holistic and local features. The histogram of indexed shapes (HIS)
is extended to introduce the local features and voxelized ear models are used to generate
the global features. Prakash and Gupta [PG14] developed a method for ear recognition
utilizing co-registered 2D ear images of 3D ear images. The feature key-points from the
3D ear images are found by the co-registered 2D images. Ganapathi and Prakash [GP18]
developed a technique for 3D ear recognition based on global and local features of the
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ear. They proposed a global feature based on the geometry of the ear model, which was
used along with representations of four well-known local 3D descriptors. Utilization of
3D along with 2D ear images to achieve ear recognition and detection was investigated by
Islam et al. [Is11]. The neighbours of detected key-points were used to generate the local
feature vector. These vectors are used to match the ear pairs.

3 Proposed method

Given a 3D ear pointcloud, P ∈ Rm×3, for every point p ∈ P, a local reference frame is
computed as follows: For each point pi, we find neighbours p11, p12, p13....p1N within a
global radius R to form a scatter matrix C ∈R3×3, is defined as Ci = ∑

N
j=1(pi− p1 j)(pi−

p1 j)
T w j, where w j is the weightage given to each neighbour based on the distance between

the feature point pi and the neighbour p1 j. The matrix C is further decomposed into Eigen
values (λ1,λ2,λ3,where λ1 ≥ λ2 ≥ λ3) and vectors (v1,v2,v3). These vectors are used as
the basis to create the local reference axis at each key-point. With respect to the obtained
axis, we find local neighbours of key-point pi for N distinct radius {r1,r2,r3,r4, ...rN}.
The neighbours correspond to each radius is separately projected to xy-,yz-, and zx planes
of the respective local axis to create depth images Dri

x , Dri
y , Dri

z . These depth images are
further used to compute the feature vectors. The depth image Dri

x , i = (1,2,3, ...,N) is the
projected neighbours within the radius ri onto xy- plane, where N is the number of distinct
radius. For example, Dr1

x and Dr1
y are the depth images obtain from the neighbours at point

p within the radius r1 projected to xy- and yz- planes, respectively. The depth images
obtained using multi-radii helps to encode the unique 3D geometrical information. The
dimensions of the depth images generated from each stage is same as the radius ri, i.e,
[ri× ri]. To generate the feature vector F two sub-feature vectors f1 and f2 are computed
in two stages and concatenated to obtain the final vector. Also, the feature vector F is
generated in a hybrid way, where the sub-feature vector f1 is an auto-encoder based and
the other sub-feature vector f2 is based on a handcrafted method. To compute the sub-
feature vector f1, first, a compact representation of the depth image is obtained using an
auto-encoder. In general, auto-encoder architectures have an input layer that is connected
to hidden layers.

The desired number of hidden layers selected on the basis of the compact representa-
tion needed. After thorough testing using multiple networks, we chose a network with
three hidden layers and a nonlinear sigmoid function. The architecture of the auto-encoder
for our experiments has the following dimensions: Input layer(1024), layer1 [1024, 512],
layer2 [512, 225], layer3 [225, 1024], output layer (1024). The architecture is shown in
Fig. 2. The auto-encoder network is trained using randomly picked depth images obtained
from the 3D ear samples of different subjects. Since, the depth images are of varying sizes,
they are resized to a fixed dimension before being used for training. The network is trained
offline without any manual annotation. Once the network is trained, the model is used to
generate a reduced dimension of the depth image which is used as the sub-feature vector
f1. Few input depth images and reconstructed images using the auto-encoder are shown
in Fig. 3. The input images (a - d) are obtained from a subject at different key-point loca-
tions for a fixed radius. The sub-feature vector of f1 is computed using five different radius
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Fig. 2: Auto-encoder used in generating reduced feature vector. The input dimensions
R1×1024 is compactly reduced to lower dimensions R1×225

(r1 = 0.3×R, r2 = 0.6×R, r3 = 0.9×R, r4 = 1.2×R, r5 = 1.5×R) and is represent as
Fr1..N

x , Fr1..N
y , Fr1..N

z , where R is the global radius. The multi-level radii are represented as
the fraction of this global radius. Throughout the experiment the global radius is chosen
as 35. Here, Fr1..5

x is the reduced dimension representation of the depth image projected
onto xy- plane for five distinct radius r1,r2,r3,r4,r5. The depth image is represented as a
vector of dimension 225. For example, a 3D Ear image with 100 key-points is represented
by a matrix of size 100 × 225. Since, each key-point is generated using five different ra-
dius, three depth images corresponding to three projections are created for each radius.
Therefore, a total of fifteen depth images are created for each key-point and concatenating
the feature vectors of all the depth images leads to a vector of 1× (15 ∗ 225). To have
a compact representation and to avoid the increase in dimensions, only a subset of these
depth images are used in creating the sub-feature vector f1. The selection process of sub-
set of depth images used in generating the sub-feature is explained in Section 4.2. Next,
we discuss the computation of other sub-feature vector f2 using the depth variations of
the depth images. A matrix DV is generated using the gray level co-occurrence, where the
entry (i, j) in the matrix represent the joint probability of the pixel intensity i with a spatial
relationship to another pixel intensity j.

Further, moments of the matrix is computed for the gray level distributions. A matrix can
be represented completely using the central moments of all orders. Here, lower order mo-
ments are used to extract the information of the matrix DV . The sub-feature vector f2 is
constructed from the local statistics, the moment, µmn of the co-occurrence matrix DV is
defined as: µmn =∑

L
i=1 ∑

L
j=1(i− ī)m( j− j̄)nDV (i, j), where L is the depth level used in con-

structing the matrix DV , ī = ∑
L
i=1 ∑

L
j=1 iDV (i, j) and j̄ = ∑

L
i=1 ∑

L
j=1 jDV (i, j). To encode

an image, the depth level also plays a key role. Choosing a large value or small value for
L may not encode the distribution of the gray level intensities properly. Choosing a small
value for L returns the feature vectors with less discrimination power and at the same time
a large value results in encoding redundant information. After extensive experimentation,
we have chosen L = 6 to create the distribution matrix. The feature f2 is computed by con-
catenating LSr1..N

x , LSr1..N
y , LSr1..N

z , where LSr1..N
x is the local shape descriptor obtained from
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Input images and reconstructed images obtained using autoencoder. (a)-(d) are the
input images and (e)-(h) are the corresponding reconstructed images

the depth image projected onto xy- plane for N different radii. The final feature vector F
is generated by concatenating the obtained sub-features f1 and f2.

4 Experimental analysis

This section presents experimental evaluations of the proposed technique. The following
terms are defined to analyze the recognition performance. FAR (False Acceptance Rate) is
the rate at which the recognition system accepts an unauthorized ear image and FRR (False
Rejection Rate) is the rate at which the recognition system rejects an authorized ear image.
EER (Equal Error Rate) is the measure of likelihood at which the FAR and FRR are equal.
ROC Receiver Operating Characteristics is another important measure used to evaluate
the recognition performance. It plots FAR with respect to GAR (defined as 100 - FRR).
University of Notre Dame-Collection J2 (UND-J2) [YB07] dataset is used to demonstrate
the effectiveness of the proposed technique. For the evaluation, two or more samples from
404 subjects are considered. A gallery dataset G = {E11,E21, ..Ei1...En1} using n ear sub-
jects, where Ei1 is a sample of the ith subject randomly selected from the database, and
the probe dataset P = {E12..q1 ,E22..q2 , ..Ei2..qi ...En2..qn}, where Ei2..qi represents qi samples
of the subject i excluding Ei1 are created for experimentation. The feature key-points in
the experiments are chosen randomly points using uniform distribution. First, a gallery and
probe dataset is created from the chosen 404 subjects with 1780 samples. A gallery dataset
contains 404 arbitrarily chosen image from each subject and the probe contains 1376, the
rest of the images. Second, the local feature vectors for all the images is computed us-
ing the proposed descriptor. The local descriptor matrix is of size M×N where M is the
number of key-points in the image and N is the dimension of the feature descriptor vector.
The first step of matching an ear image with the other is to find correspondence key-points
which can be achieved by the nearest neighbour ratio matching. The nearest neighbour of
the feature point of the probe image is decided by finding its corresponding feature point
in the gallery image having the least Euclidean distance. Using these matching points, fine
alignment is performed using ICP algorithm [BM92] and a matching score is calculated.
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(a) (b)
Fig. 4: (a) Precision Vs. recall for feature subset selection. It is clearly seen that the feature
combinations 1, 2, 3 and 8 shows better performance (b) Precision Vs. recall for six differ-
ent radii. It is clearly seen that the radii R = 40,35,30 shows better performance compare
to the other radii

ICP algorithm first computes the relative translation and rotation required to align the two
point clouds and iteratively align both point cloud by reducing the matching error. Few
examples of registration between the probe and gallery images using the correspondence
point computed by the proposed technique are shown in Fig. 6 and the ROC is shown in
Fig. 5(b).

4.1 Effects of radius on recognition

The radius includes global and local used are chosen experimentally. An extensive testing
on a subset of subjects from the dataset for radii [R = 15,20,25,30,35,40] is performed
and have chosen the best radius using the evaluation method, precision and recall. The Fig.
4b shows the precision Vs. recall for six different radii. For R = 30,35,40 the descriptor
indicates better results and for lower values, the performance degrades. The reason for the
best performance is that the radii R = 30,35,40 captured sufficient information to encode
the feature vector. Moreover, the subjects present in the database have holes and choosing
a smaller radius return very less information of the neighbourhood surrounding the feature
key-point. Fig. 4b shows precision Vs. recall for different radius combinations. Once a
global radius R is obtained, the multi-radii are chosen as a fraction of R. For example, a set
of values [0.1,0.3,0.5,0.7,0.9]×R represents local five radii computed from the chosen
R.

4.2 Effects of feature combinations on recognition

The concatenation of all computed vectors Fx
ri , Fy

ri , Fz
ri increases the size of the final

vector. A subset of the computed features used to reduce the dimensions. For five vary-
ing radius {r1,r2,r3,r4,r5}, eight combinations of features are carefully chosen and are
summarized in Figure 5(a). The performance of the combinations No.1, No.2, No.3, No.4,
and No.8 are superior than the other combinations. The fact behind the better performance
is that the radii r1, r2 and r4 are the combinations of small and large radius which helps
in capture the information around the key-point in uneven and noisy data. Moreover, we
observe that for the chosen database, the depth images obtained through xy and zx pro-
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jections captures sufficient information, for example No. 8. So, the final feature vector is
created using the combinations [Fx

r4 ,Fy
r4 ,Fz

r4 ,Fx
r2 ,Fy

r2 ,Fz
r2 ,LSx,LSz]. Fig. 4a shows the

precision vs. recall for different combinations.

No. combinations of the features
1 Fx

r4 , Fy
r4 , Fz

r4

2 Fx
r2 , Fy

r2 , Fz
r2

3 Fx
r4 , Fz

r4 , Fx
r1 , Fz

r1

4 Fx
r4 , Fy

r4 , Fz
r4

5 Fx
r4 , Fz

r4 , Fx
r2 , Fz

r2

6 Fx
r4 , Fy

r4 , Fz
r5

7 Fx
r3 , Fz

r4 , Fz
r5

8 Fx
r4 , Fz

r4

(a) (b)

Fig. 5: (a) Different combinations of computed features (b) ROC curve for the proposed
descriptor

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6: First row shows few examples of matching of correspondence points in probe (blue)
and gallery (red) images using the proposed descriptor. Second row shows few examples
of registration of probe (blue) and gallery (red) images. (a-d) shows the correspondence
points match, and (e-h) shows the fine registration of probe and gallery using the initial
transformation obtained from the correspondence points

5 Performance comparison

We have analyzed the performance of the proposed descriptor with the other well known
3D ear recognition techniques in the literature. The proposed technique has achieved a
recognition rate of 98%, which is superior than the techniques [CB07b], [Is11], [Su14].
However, there are few techniques which has better performance than the proposed tech-
nique. The technique [ZCAM11] has achieved 98.6% on UND-G dataset which is com-
paratively smaller than the dataset UND-J2 used in our experimentation. In [PG14] and
[YB07] the recognition rate is better than our technique, whereas the techniques needs
co-registered 2D images to find the key-points for coarse and fine alignment.
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6 Conclusion

In this paper, we presented a 3D descriptor technique for matching extremely comparable
3D objects such as the human ear. We performed experiments on the UND-J2 ear database
by randomly choosing one 3D ear image of each subject as gallery and the remainder of the
images as probe. It is observed that the matching performance of the descriptor obtained
using the proposed technique is found to be at par with the other available techniques
for ear matching. The major contribution of this article is the use of a hybrid approach
to construct the 3D descriptor. The proposed technique used the automated generation of
features and handcrafted features to develop the descriptor which has made the proposed
technique robust to noise, small holes and occlusions.
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