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Abstract: We investigate how enterprise modelers see common types (e.g., actor,

event, process) used in most modeling languages in terms of their semantic feature

structure (e.g., is human, is material). We hypothesize that modelers have specific

interpretations for some of these common types that affect their range of

conceptually valid instantiations (e.g., actors should not be instantiated as human

things). Based on two exploratory psychometric studies performed with enterprise

modeling practitioners and computing science students we discuss the way these

typical interpretations affect their model(ing) semantics (e.g., results typically

having to be modeled as well-described and non-natural entities, restrictions

typically as logical necessities), and what consequences these findings have for

modeling languages and the use and creation of models themselves, especially in an

inherently collaborative effort like enterprise modeling. We conclude by arguing

that insights into these conceptualizations are likely useful and should receive more

attention and studies.

1 Introduction

While the quality of a conceptual model can be interpreted differently depending on

what people expect from it [FHVL12, HFL12], its validity is contingent on its ability to

communicate its intended meaning clearly and completely [Rob06]. As models are there

to support the building and exchange of knowledge [Sta00], it is important that we can

be sure that the semantics in a model reflect the semantics intended by the modeler. This

goes further than merely ensuring that the model is capable of expressing those

semantics that the original modeler wanted to (with, e.g., test scenarios). We need to

additionally ensure that the model does not allow one to express situations that, in the

real world, are considered conceptually invalid (or simply illogical) by the original

modeler and stakeholders.

We focus here primarily on domain models that are created in order to communicate

about a domain with other people. With such models it is important to avoid mismatched

understandings between different modelers and stakeholders [KSKS12], as they can

have a disastrous effect on both the produced models and the modeling process itself. As

such, it is important to ensure that a user of the model does not have to guess about the

semantics expressed in it. They might not have been involved in the original modeling
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process, or come from a different background with their own set of typical

understandings, and thus not share the same conceptualization as the original modelers.

What is typically already done to ensure the validity of such domain models is to reach

consensus on what type to represent elements from the universe of discourse by, and

how to call those representations. However, such discussions often take form of agreeing

on the type to be used for such elements (e.g, “Let us model this pizza as a RESOURCE.",

“Let us model the delivery of the pizza as a PROCESS."), while not necessarily going into

detail on just what that type (‘resource’ or ‘process’) actually is in this context. Instead,

the deeper semantics often stay implicit. For example, the business process for pizza

deliveries might involve restrictions that are logical necessities and cannot be broken

(e.g., a pizza can not be delivered before it is made, thus correctly observing temporal

dependencies) but also restrictions that can be broken, but perhaps ought not to because

of moral or financial constraints (e.g., a pizza should be delivered within 30 minutes of

its order). It is thus important that whatever type we choose to represent these

restrictions accommodate the conceptual distinction between alethic (i.e., logical

necessity) and deontic (i.e., how the world ought to be) modality. But, if we only agree

that we model these kinds of restrictions as “rules", we leave this distinction implicit and

depend on the (selection of the) modeling language to dictate what exactly the semantic

status of both of these rules can be (let alone that users at times deliberately or

unconsciously ignore a language’s semantics and invent their own, not always explicit,

semantics [HS05]). As some languages accommodate less conceptual distinctions than

others, that means relevant information might be lost.

Let us consider actors. If a modeler typically conceptualizes actors as human beings who

take actions on their own accord, and wishes to model them so, it is necessary for

whatever type is used from the modeling language to support the relevant parts of that

conceptualization. In this case, making it explicit that any instantiation of an actor needs

to be a single human being, and more specifically, a (in the given context) autonomous

human being, for instance when modeling social decision making processes in an

enterprise. If the produced model, however, is not explicit about these distinctions, there

can be a host of conceptually related, but invalid, instantiations (e.g., an employee who

needs permission for every action and can thus not be considered autonomous, a

department with multiple persons). Such problems can be prevented by either using a

modeling language that accommodates the necessary conceptual distinction, or by

explicitly modeling such distinctions manually (e.g., by using unary constraints on the

type for each necessary semantic feature). However, being aware of the relevant and

necessary conceptual distinctions before the model creation process is what is often still

lacking.

Thus, in order to ensure that a model can clearly and completely communicate its

intended meaning, regardless of who is interpreting it at what time, a certain degree of

conceptual alignment is needed. Specifically, an alignment between the

conceptualization the original modeler has of his modeling concepts (i.e., the types used

by a modeling language to represent the domain concepts) and the ‘official’, used,

semantics of those modeling concepts (i.e., the semantics as found in the specification of

the used language). This makes it easier to ensure that the modeling language (or dialect

thereof) which will be used accommodates the needed conceptual distinctions. What is

most lacking for this is either a simple and systematic procedure to uncover such
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distinctions (which is difficult as poignant distinctions might simply never be explicitly

talked about), or an initial set of commonly occurring distinctions that can be used as

guidelines in such a process. When such distinctions have been discovered (either as

generalized findings or specifically for a group), they can be of value to the modeling

process by e.g., providing model facilitators with input for the facilitation

process [RHLR11], or by providing explicits focus points for annotations in the model.

Such factors should help enhance the quality of created models and improve consensus

amongst stakeholders [SPS07].

Enterprise Modeling (EM) is an excellent environment to perform research into such

commonly occurring distinctions. As it is a kind of collaborative

modeling [SHP09,RGS+08], which is burdened with the difficulty of requiring “people

within the business to express their views in terms of a modeling language" [BKV09],

who often have a different view on things [RKV08] and then needing to integrate or link

all those models written by different people in different languages different

languages [Lan04,OB06], it is especially important to be aware of the different

conceptualizations they might have of the types used in their models. Furthermore, it is

possible that different aspects of the enterprise (e.g., goals, processes, value-exchanges)

were modeled by separate groups and need to be integrated without access to (all) the

involved people, showcasing again the need to be absolutely sure that the semantics

expressed in the models can be relied on. Thus, one can expect a diverse amount of ways

that modelers see different concepts.

We will first focus on investigating whether a small group of enterprise modelers have

particularly specific conceptualizations of types used by conceptual modeling languages

used in EM (e.g., i* GHYA07], BPMN Obj10], e3Value [GYvdR06], RBAC [FCK95],

ITML [FHK+09]), and then investigate whether there are common conceptualizations

(e.g., actors are considered as singular autonomous human beings, resources as

materially existing things) that could be used as pointers for a procedure to uncover

conceptual distinctions about these types. With these results we hope to show it is useful

to have insights into such conceptualizations, that our approach can be used as a

systematic procedure to uncover them, and that larger studies with more participants are

warranted.

The rest of this paper is structured as follows. In section II we clarify what the objects of

our investigation are, and in section III we set out our research methodology for

investigating them. We show the most important results in section IV, discuss them and

their consequences in sections V and VI, and finally conclude in section VII.

2 What we investigate

We need to look at someone’s concept of a type in order to accurately investigate it. A

concept in this context is the understanding that people have of the things they use to

model, which is not necessarily the same as the understanding that is prescribed to them

(by e.g., language specifications, official standards, or group ‘consensus’). This should

be done by investigating people, because “semantic memory for concepts is based on a

subject’s memories of past experiences with instances of those concepts" [Gee10] and

because people generally do not think in the semantics of a given modeling language,

but in the semantics of their own natural language [Sow10]. While we can investigate a
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concept, we cannot measure it completely, but can instead characterize it

(cf. [MAG+11,Pin07]) by looking which semantic features (i.e., distinctive attributes or

properties of something that contribute to its meaning) resonate strongly with it for a

person. This gives us information about the range and boundaries of the concept, which

directly corresponds to the amount of conceptually valid instantiations of a type.

Different conceptualizations of a type can thus affect both the amount, and the content of

the conceptually valid instantiations. When we look at the concept ACTOR with no given

context, we could instantiate it with elements as human beings, computer hardware,

abstract entities (e.g., agents), and organizational departments. However, when there is

some context (i.e., from the characterization of the concept for that type), the amount of

possible instantiatiable elements becomes smaller. Assume we know that someone sees

actors as human ‘things’. Computer hardware and abstract entities are now no longer

conceptually valid instantiations. An organizational department might still be a

conceptually valid instantiation of that concept as it is not uncommon for people to

conceptualize as sets of human beings being essentially human. However, when we add

to the context that actors are also considered single (non-composed) things, we do likely

have to rule out a department as a conceptually valid actor. The way that an increasing

amount of contextual information (in our case, relevant semantic features) affect the

range of a concept can be understood in terms of quantum collapse in the semantic space

of that concept (cf. [BC05,BW08]), which is backed up by recent psychological work on

theory of concepts [GRA08]).

Consequently, we can effectively characterize the conceptual understanding people have

of the types common to most modeling languages by investigating their concepts for

them in the light of a set of relevant features. To do so, we will base ourselves on earlier

work we performed [vdLHLP11] on the specifications of a number of languages and

methods covering different aspects used in enterprise modeling (e.g., processes, value

exchanges, goals, architecture, performance, security). This resulted in a set of high-

level concepts that cover most types, and a set of features on which different languages

were found to differ in their typical use of the concept.

The concepts we look at are actors, events, goals, processes, resources, restrictions and

results. The different features which can be combined to characterize them are whether

things are considered to naturally occur (natural), be human (human), are single things or

composed of many (composed), are intentional or unintended (intentional), are logical

necessities or not (necessary), are physically existing or not (material), and whether they

are vague or well described (vague). A combination of any of these features can then be

taken as a characterization of a given concept, for instance an actor being a natural,

human, non-composed material thing.

It is important to note that not all features apply to each investigated concept (or are

simply not informative), and that we investigate what people consider, regardless of

whether it makes sense, such as e.g., people considering processes to be human things

instead of abstract chain of events. Nonetheless, such findings of how people actually

perceive (e.g., their personal ontology) the world, which might, for instance be choosing

to look at a process in terms of the people performing the individual events in it instead

of the events occurring can be useful for other purposes (see e.g., [Alm09] for an

argument necessitating these endeavors to validate shared ontologies).
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3 Method

We use a semantic differential [OST57] in order to investigate the conceptual

understandings which participants have of the selected types. It is a widespread method

used in different fields and areas of inquiry, and has well-researched specific quality

guidelines for the Information Systems [VM07] field to ensure quality and validity of its

results. The semantic differential can be used to investigate what connotative meanings

apply to an investigated term, e.g., whether ‘red’ is typically considered good or bad. As

input we will use the types and features described in the previous section. Each feature is

described by a minimum of 5 adjectives (found through an earlier pilot study) that

relates to the specific semantic of the feature to be investigated, ensuring statistical

significance [VM07]. In order to ensure we investigate the typical understanding of each

type, the differential task for each type is preceded by a semantic priming task in which

participants are primed onto their typical understanding or use of the type.

We report on a study investigating practitioners (n=12), which was performed amongst

employees of two internationally operating companies that provide support to clients

with (re)design of organizations. The participants all had several years of experience as

enterprise modelers, creating and using conceptual models and using diverse modeling

techniques. Furthermore, we include results from an ongoing longitudinal study (n=10)

into the (evolution of) understanding computing and information systems science

students have of modeling types. This study started when the students began their

university studies and had little to no experience, and will continue throughout their

studies.

Results from the semantic differential are processed to give an average score for each

type-feature combination stemming from the individual adjectives used for that feature.

This results in a vector for each type, containing a score (a numerical value ranging from

2.0 to −2.0) describing for each feature how it relates to that type. Scores ≥ 1.0 were

considered positive judgments, scores ≤ -1.0 were considered negative judgments. Other

scores were considered neutral. The judgments are then used to calculate a percentage-

wise breakdown of the amount of different judgments for each concept.

4 Results

Results for both the practitioners and students are shown in Table 1. The percentages are

an aggregate reflecting the amount of negative, neutral and positive results. The amount

of neutral responses can be taken as a measure of how open people’s typical

conceptualization of a concept is, in that it allows for more flexible (and possible amount

of) instantiation. On the other hand, the negative and positive responses indicate that an

instantiation of the concept would either need, or not need to display a certain feature.

For example, when it comes to ACTORS, practitioners have 9% negative responses, 53%

neutral and 38% positive. This means that about 9% of the responses indicate a feature

that has to be false for a typical actor instantiation (e.g., a typical actor should not be a

composed thing), 38% of the response indicate a feature that has to be true for a typical

actor instantiation (e.g., a typical actor should be a human thing), while the remaining

53% allow for features to be either false or true (e.g., an actor can be either material or

immaterial thing).
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Table 1: Comparison of neutral and polar responses. Practitioners average 43.86% neutral

responses, students 38.14%, 39.29% and 36.86%, being on average 5.75% less neutral

actor event goal process resource restriction result

Practitioners

negative 9% 27% 22% 31% 30% 45% 45%

neutral 53% 53% 52% 40% 47% 32% 30%

positive 38% 19% 26% 29% 23% 22% 25%

Students (phase 1)

negative 26% 38% 44% 34% 30% 37% 29%

neutral 41% 44% 25% 36% 38% 43% 40%

positive 33% 17% 32% 30% 32% 20% 32%

Students (phase 2)

negative 16% 41% 34% 30% 27% 36% 39%

neutral 47% 41% 33% 47% 41% 37% 29%

positive 37% 17% 33% 23% 31% 27% 33%

Students (phase 3)

negative 7% 44% 39% 31% 33% 43% 31%

neutral 47% 44% 27% 37% 34% 33% 36%

positive 46% 11% 34% 31% 33% 24% 33%

Table 2 shows a number of strongly polarized type-feature combinations. The

percentages here denote how many of the participants judged the type to need (or need

not) to display the given (semantic) feature. For example, 91% of practitioners judged

goals to need the ‘necessary’ feature, which means that the majority conceptualize goals

as things that need to be achieved (or perhaps gained, if goals are also conceptualized as

material objects). It can also be seen that 64% of practitioners judged processes to be

non-vague things, meaning that they are (or should) be well-described things. The scores

for students are shown as the scores per phase of the longitudinal study, and are only

included for those type-feature combinations for which they also display strongly

polarized judgments.

5 Discussion

As briefly discussed in the previous section, the results as seen in Tables 1 and 2,

directly affect the total amount of conceptually valid instantiations for a given type. The

higher the amount of neutral scores, and vice-versa the lower the amount of polarized

(and more to the point, strongly polarized) scores, the lesser features need to be

exhibited by an instantiation of a type. Most interesting for our purpose are the polarized

scores, as they indicate a feature that has to be exhibited by the type, and thus restricts

the amount of conceptually valid interpretations for that type.
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Table 2: Some strongly (>55%) polarized type-feature combinations in the practitioner sample.

type is… score (practitioner) score (student)

goal necessary 91% 90%,70%,80%

process necessary 64% 90%,70%,70%

not vague 64%

resource necessary 64% 80%,70%,80%

not vague 64% 30%,60%,80%

restriction not natural 73%

not human 73% 70%,80%,60%

necessary 73% 40%,70%,60%

not vague 82% 90%,60%,90%

result not natural 64%

not human 73% 80%,80%,90%

intentional 73%

not vague 91%

The results also show that around half of the judgments for the types are of a polar

(either positive or negative) nature, indicating that there are many features for all

investigated types that are conceived of as respectively strongly typical and strongly

atypical. On an individual level this may vary, as specific people might find all features

(a)typical for a given type, or find no features particularly typical for a given type (i.e.,

remain neutral). Such effects are likely correlated with the expertise a modeler has in a

specific area, which might exhibit by an increased amount of detailed scrutiny he will

give to the types often used by that area. The variation found within the results (see in

Table 3) is only significantly different from the average when it comes to actors and

events (meaning people are more likely to have similar conceptualizations of those

types).

Table 3: Variance of results for each investigated type in the practitioner study

Interestingly enough there is not a significant difference in the relative amount of neutral

and polar scores between the practitioners and the students. One could expect that

experienced modelers have come across a larger variety of viewpoints (through e.g., the

use of different languages and methods and working with a multitude of people), and

thus would be more accommodating in their conceptualizations of the investigated types.

This is, however, not the case. It might again be correlated with the experience modelers

have, in the sense that their often specialized focus leads them to have strong opinions

on a specific set of types (e.g., value modelers expressing very specific demands on the

features that a resource can and should exhibit). Some specific strongly polarized results

are shown for a number of types in Table 2. Only features for which more than 55% of

the participants judged them to be necessary (positively or negatively) are taken into

account.

actor event goal process resource restriction result

variance 0.38 0.57 0.68 0.93 0.73 0.94 0.92
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account. This does not mean that a participant is not capable of considering an

instantiation of the type that does not conform to these features, but that their typical

interpretation (and likely implicit usage) conforms to this set of features. We will discuss

some of them in more detail below.

Goals are one of the few types where there is but one absolutely needed feature.

Specifically, goals are considered by most (91% of practitioners) to be necessary. What

this means is that goals are considered to be logical necessities in sense of their being

achieved, i.e., they are the logical consequence of following a certain procedure to

achieve them, and should be achieved then (and likely only) then. This is in contrast to

the other option of goals being things that ‘merely’ should be achieved. As a

consequence, this seems to imply an implicit bias towards hard-goals, as soft-goals are

often used to model goals for which the achievement status is (or cannot) be known a

priori. The absence of any other needed features is interesting as well. It could have been

expected that, in line with the implicit bias towards hard-goals, the majority of

practitioners would consider goals as being non-vague (i.e., well-described), yet only

45% does so.

Resources are mostly interesting because of the trend seen in the scores of the

investigated students. A slight majority of practitioners deem resources to be necessary

and not vague. The necessary feature is consistently shared by students, yet the not

vague feature was not shared from the beginning. Over time, students also seemed to

deem not being vague a needed feature of resources (going from respectively 30% to

60% to 80% of the investigated students). This seems to imply that resources, are

commonly seen as things that need to be well-defined, before they can be reliably (and

systematically) used for some other activity. Such typical interpretations might clash

with the way resources are handled in some languages (e.g., the information object in

ArchiMate [The12], which allows you to represent a functional piece of information

needed by some business process, without requiring you to be explicit about what

information it contains).

Restrictions already have a larger typical feature set. They are typically considered non-

natural, non-human, necessary and non-vague things. The non-vague feature seems

obvious in that it demands us to be clear about what a restriction actually does (perhaps

making rules more typical restrictions than something like, say, architecture principles).

Non-natural clearly implies that they are not naturally occurring restrictions (e.g., natural

laws like gravity) but more like restrictions that are ‘created’ to control or restrict other

things. Related to this restrictions are also not considered to be human things, which in

this context might mean that the general way of conceptualizing a restriction is seeing it

as the abstract entity itself, and not, for instance, the human being enforcing it. More

interesting from a modeling language point of view is the, perhaps obvious, view of

restrictions being logically necessary things. This means that a typical restriction is

something that has to be adhered to, and not something that can be broken. To

accommodate that, a modeling language should either have its restriction types be

inherently alethic, or allow for a way to explicitly distinguish restrictions with different

modality. While there are not many (especially domain-specific) languages that

accommodate this, Object Role Modeling (ORM) [Hal05] does have explicit support for

denoting elements as being either alethic or deontic, and thus could be a useful choice of
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language when a domain involves those non-typical restrictions: ones that do not

necessarily have to be adhered to.

Results are typically non-natural, non-human, intentional and non-vague. This seems to

fit with the common conceptualization of results, because they are seen as ‘new’ things,

and thus shouldn’t be already existing naturally occurring objects. This requires a certain

level of ontological scrutiny though, because a tree is certainly a naturally occurring

entity, as well as a tree branch that naturally fell off from a storm, but a log that results

from cutting the tree into parts with a chainsaw is not. Furthermore, a branch that merely

breaks off from a tree would not be considered a result in our sense because its breaking

off was not intentional. Some results as modeled by languages might seem not to fit and

evoke discussion on their ontological status, as, for instance, the human output concept

in ARIS [SN00]. On a first glance, it would seem not to fit the characterization as it is

likely a human kind of thing. However, ontologically speaking, the actual thing here is

the activity performed by a human, not the human itself. Say, the successful delivery of a

pizza. As results are not typically considered material things, this seems thus to be a

conceptually valid instantiation of a result.

To show in some more detail how certain combinations of features change the amount of

conceptually valid instantiations for a given type some examples are shown in Table 4.

In line with the explanation of context (in this case, features) changing the amount of

conceptually valid instantiations we show how some of the common types are affected

by the results we found.

Table 4: Examples of difference in conceptually valid reflecting some of Table 2’s results

type is a ... feature-

wise

example ounter-example

goal Necessary thing Any thing to achieve,

whether physical (e.g.,

producing a re- presentation

of a model) or non-physical

(e.g., producing the

information needed for it)

entity to be acquired or some

state to be reached, and so on

A non-necessary goal,

or thing that is

achieved as a side-

effect of achieving

something else

restriction Not natural, not

human, necessary

to adhere to and

well-define thing

Legal rules given in a state’s

laws, well-known and

documented natural laws

etiquette, informal

dinner rules, or natural

laws like gravity

result Not natural, not

human,

intentionally

achieved well-

define thing

A baked pizza, a sawed log,

a specification of a modeling

language, a representation of

the specification of a

modeling language

A newly hired person,

the outcome of trial-

and-error testing

When a type has only few absolutely needed features, the amount of conceptually valid

instantiations is significant. Conversely, the amount of conceptually invalid

instantiations is quite small. A goal is a good example of this, as the only needed feature
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is it being a necessary thing, which means we can instantiate it as an actual physical

object to be achieved (i.e., the goal is the pizza that will be baked), the activity of having

done so (i.e., the goal is the final state of the pizza baking process) or even more

abstract, an abstract object that follows from its creation (i.e., the goal is the information

gained when the pizza is baked). The few counter-examples are those where the goal is

not necessarily achieved, which could be either something that is not achieved, or

something that was achieved by accident (e.g., as a side-effect from another process).

The main problem here is that the counter-examples (and examples themselves too,

perhaps) are so broad that it is difficult to figure out whether an instantiation was

actually a valid instantiation or not.

On the other hand, when a type has many needed features, it is easier to find out whether

something is a conceptually valid instantiation or not. When it comes to results, certain

objects are clearly valid instantiations, like a freshly baked pizza or a specification of a

modeling language. The latter one can actually be a result in two ways, as both the actual

specification of the language is a valid result, as well as the representation of the

language (i.e., the actual written documents describing it). Counter-examples are then

also easy to come by, for instance, the actual person hired as the ‘result’ of a hiring

process is not typically considered a result (by virtue of being human). Furthermore, any

‘results’ that were the outcome of trial-and-error approaches are also on shaky grounds,

as they are not typical results by virtue of not having been necessary.

6 Consequences

The results we have presented entail a number of consequences for the creation and use

of models, and modeling language design itself. As it is clear that there are some

common type-feature combinations amongst the people we investigated (while the total

amount of conceptual diversity is far greater than that), it is important that we revisit the

way we model in order to deal with the effects of these different conceptual

understandings.

While the data presented and discussed here is reporting on average and shared

conceptualizations, the conceptualizations that individual people have can vary wildly. It

is important that we take a moment in the modeling process before we start creating

models to deal with these differences. A way to do so is by looking at the types that are

needed to model the domain under investigation, and then discuss whether certain

features (and combinations thereof) apply to it. This can be done by taking known lists

of features that have proven to be a source for disagreements and conceptual

misunderstandings, such as the features reported on in this work. For example, when we

are modeling the process of baking pizzas, we might focus on the resources for a

moment. We can then take some time before creating actual models to discuss what we

find conceptually valid resources and what we do not (i.e., what we would rather not be

possible to express in the model). From such discussions we gain a clearer understanding

of how people see such a process and want to model it, which helps us to focus (e.g., by

abstracting from such potential resources as time, only modeling material things as

resources). By doing so, the semantics of the created model are shared and well

understood by all the people involved in the process, not just those who are intimately

familiar with the specification of the used modeling language.
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Such discussions can go into more detail feature wise as the focus on what to model

becomes narrower. For example, when there is already a strong focus on processes, the

types most relevant to a process (e.g., processes and restrictions) can be explored more

closely by looking at more relevant features in greater detail. For instance, a process

model might benefit from having a level of traceability on the restrictions in

it [PdKP12], which requires us to discuss whether restrictions are always made by

specific people, or departments, and whether that implies that restrictions carry

responsibility with them. These aspects require a more fine-grained characterization of

the process type than if it is used in a general way. Equally so, when the focus is on

modeling value exchanges, then the focus can be on, for instance, characterizing types

like resource and actor more clearly by investigating more detailed features (e.g., value

exchanges can be analyzed from an ethical point of view, and thus require actors to be

moral agents).

As it is clear that there are a number of conceptual distinctions people have for the types

we investigated, it is also important that the modeling languages we use allow us to

express these distinctions. This can be ensured in a practical way by selecting a

modeling language which allows us to explicitly express those distinctions that are

important to us. For example, when it is important to make a distinction between alethic

and deontic restrictions we could choose for ORM, when it is important to make a

distinction between goals that are well-defined or not, we could choose for i* or any of

the goal modeling languages that explicitly support hard- and soft goals. In short, before

selecting a modeling language and creating models, we need to find out the most

important conceptual distinctions the people involved in the modeling process have, and

then select a language based on them.

On a more theoretical side, we should also ensure that the modeling languages support

these different conceptual distinctions in the specification of their semantics. While this

would not necessarily be useful for general purpose languages (e.g., UML, ER), domain-

specific languages could benefit from the added detailed semantics. This requires more

fine-grained investigations into the conceptualization people have of types as they are

used in specific domains. For example, a more detailed characterization of what a

resource is could be useful to languages that center around value exchanges (e.g.,

e3Value), implementations (e.g., ITML) or deployments (e.g., ADeL [Pat11]).

Finally, while the results we have shown are interesting and could be used for a

multitude of purposes, care must be taken not to immediately extrapolate the results of

this relatively small study and infer general truths from them. Different groups with

varying backgrounds and specializations might have different conceptualizations, and

thus further studies might uncover additional and conflicting conceptualizations. As

such, the contribution of this work has been in showing the demonstrating the possibility

to systematically uncover such conceptual distinctions and laying the ground for further

investigations.

7 Conclusion & Future Work

We have shown how the conceptualization which someone has of types used by

modeling languages can affect the range of conceptually valid instantiations for such

types. This can have a negative effect on the validity and usefulness of created models if
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we do not take care to discover and communicate these conceptualizations. Furthermore,

some languages might be more suited to deal with certain conceptualizations by virtue of

explicitly expressing conceptual distinctions that other languages leave implicit. Care

should thus be taken to also select a modeling language that fits most with the

conceptualizations of the involved modelers and stakeholders. Having shown the

potential use of these kind of studies, we aim to extend their thoroughness for

generalization purposes by repeating them with a larger amount of practitioners, and also

by incorporating groups focused on specific sectors (e.g., modelers in healthcare,

government, or telecom) and languages (e.g., the BPM community or the ArchiMate

community).
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