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Abstract: Generating software from abstract models is a prime activity in model-driven engineering.
Adaptable and extendable code generators are important to address changing technologies as well
as user needs. However, they are less established, as variability is often designed as configuration
options of monolithic systems. Thus, code generation is often tied to a fixed set of features, hardly
reusable in different contexts, and without means for configuration of variants. In this paper, we
present an approach for developing product lines of template-based code generators. This approach
applies concepts from feature-oriented programming to make variability explicit and manageable.
Moreover, it relies on explicit variability regions (VR) in a code generator’s templates, refinements
of VRs, and the aggregation of templates and refinements into reusable layers. A concrete product
is defined by selecting one or multiple layers. If necessary, additional layers required due to VR
refinements are automatically selected.
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1 Introduction

Engineering complex software systems introduces a conceptual gap between the problem

domains and the solution domains of discourse [FR07]. Model-driven engineering (MDE)

aims to bridge this gap by lifting abstract models to primary development artifacts. Deriv-

ing executable software from models requires extensive handcrafting or code generators.

Thus, generating software from abstract models is a prime activity in MDE and many

domains have adopted code generation [RR15].

Although reuse is of essence in software engineering, most code generators are monoliths

developed for a very specific purpose (such as a certain target platform with specific fea-

tures) that do not consider reuse or variability as their primary focus. Reusing such code

generators in different contexts with different requirements or features is hardly feasible

and thus impedes code generator development. One approach to handle variability in such

monolithic code generators is to create code generator variants via informal reuse [Jö13]

such as copy-paste. In this scenario, the original code generator variant is copied and all re-

quired changes are applied to the copy of the variant. The main downside of this approach

is that generator changes might need to be applied to all generator copies. This is laborious

and error-prone. An alternative to that is to use specific code generation frameworks with

built-in support for handling variability [Ac15, Xt15]. Even though this alternative does

not result in monolithic code generators, the resulting code generator variants are bound
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to a specific code generation framework, which might not be feasible for legacy code gen-

erators. Additionally, the provided approaches rely on language specific approaches for

implementing variability, e.g. design patterns.

The goal of this paper is to present an approach to develop code generator product lines

(CGPLs), which is explicitly designed to handle variability in code generators and which

can be applied to any code generator framework. To implement variability in code gener-

ators, the approach is based on explicit variability regions (VRs) and the aggregation of

templates into reusable layers. Each VR can refine one or multiple VRs from a different

layer. A concrete code generator variant is configured by selecting one or multiple layers.

In addition to that, further layers are selected automatically, if this is required by the VR

refinements. The resulting layers are composed to create a concrete variant. For defining

and selecting layers, we provide two domain-specific languages (DSLs).

This idea is rooted in feature-oriented programming (FOP), an implementation technique

from classical software product line (SPL) development [Ap13]. We extend the notion

of FOP layers [SB98] over templates and define how (parts of) templates can be reused

with these layers. The benefit of applying ideas of FOP to CGPL development is that the

underlying concept is decoupled from specific template languages and can be applied to

any code generator.

In the remainder, Section 2 introduces the variability concepts our approach relies on

and Section 3 describes the product configuration mechanisms for code generators. Af-

terwards, Section 4 demonstrates the application of our approach to a code generation

framework. Then, we compare our approach to the informal (copy-paste) approach for

creating CGPLs in a case study in Section 5. Subsequently, related work is presented in

Section 6 and, finally, Section 7 concludes this contribution.

2 Variability Concepts in Code Generator Product Lines

Code generator product lines and common SPLs are both founded on a set of components

that are used to create a concrete code generator product or a software product [CN12,

PBL05, RR15]. The main difference is that a code generator product is a SPL on its own,

since it generates a variety of software products that are similar, and thus shares generator

components potentially in different variants [BS99]. As in SPLs, a concrete code generator

product, which is referred to as a variant, is a set of selected components with additional

adaptations and customizations.

Feature-oriented programming (FOP) [Ap13] is an approach to implement SPLs that is

based on building software systems by composing features. A feature represents a con-

figurable unit of a software system that represents a requirement-satisfying design deci-

sion [ALS06, Ap13]. Each feature is arranged in a layer [SB02, BSR03, ALS05] that

contains artifacts. In order to reuse existing functionality and to successively add new fea-

tures by adapting existing artifacts, an artifact may refine multiple other artifacts [Ap13].

In FOP, a refinement adds new code to an existing artifact, e.g., adds a new variable to a

Java class. Figure 1 shows an example for a stack of three layers with refinements.
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Fig. 1: Example for layers: three vertical layers L1 to L3 refine four artifacts C1 to C4.

In this example, the first layer contains three artifacts. The second layer contains a refine-

ment for the artifact C1 and a new artifact C3. Finally, the third layer contains a refinement

of the refinement for C1, a refinement for C3 and a refinement of C4 from the first layer.

By merging layers, different variants of a software system are formed. As the used layers

contain code generator artifacts, the layers are subsequently called code generator layers

(CGLs). As shown in this example, FOP relies on artifact refinements. This is feasible for

object-oriented languages but becomes challenging for template languages, as they may

differ inherently. Thus, a concept for applying FOP to template languages is needed.

2.1 Variability Regions and Variability Region Refinements

Variability regions (VRs) provide a template language independent approach to apply con-

cepts of FOP to code generators. A VR represents an explicitly designated region in an

artifact that has to be uniquely addressable by an appropriate signature. We distinguish

between three types of VRs. First, variability regions are explicitly marked in some way

and contain content within an artifact. This, for instance, allows to group a designated part

of a template as one VR, which can be refined. Second, variability regions are explicitly

marked but are empty, i.e. do not contain any content. Such VRs can be used for future

extensions. Third, the complete artifact is regarded as one VR.

For each VR, we define three different refinement operations. First, a replace operation

completely replaces a VR with some other content. In this case, a certain VR is provided

that substitutes the original VR. For example, template code for a Java method can be

replaced with a new implementation. Second, content can be added before a VR and,

third, content can be added after a VR. Semantically, before and after mean that specific

content should be included before or after a VR. This shares many phenomena with aspect-

oriented programming (AOP) [Ki97] applied on templates.

When dealing with replace operations, the effect of a replace operation to the content

added before and after a VR has to be addressed. In this work, VRs are simply replaced but

the before and after content, which may have been added, is kept. When the content that

replaces a VR or that is added contains VRs, the new content with the VRs is regarded as

a complete unit with all replacements and before and after operations. In consequence,

all existing before and after contents have to be composed.
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3 Code Generator Variant Configuration and Generation

A CGPL consists of a number of CGLs and each CGL contains a number of templates.

Before a concrete product of a CGPL can be generated, it has to be defined which re-

finement operations are performed in which CGL, i.e., which VR contained in a template

from a CGL refines which VR contained in a template from another CGL. Based on such

a definition of the refinement operations, a concrete code generator variant of the CGPL

can be configured and finally generated.

3.1 Layer Definition

In our approach, all files encapsulated in a concrete CGL of the CGPL are stored in a spe-

cific file system directory, comparable to the work in [ALS05]. The refinement operations

that are performed for each CGL are modeled in one layer definition model. To define a

layer definition model, we provide a simple domain-specific language (DSL) called Layer

Definition Language (LDL). Using LDL, it can be defined which CGL refines which other

CGL and which concrete refinement operations are performed. LDL allows for modeling

the three refinement operations we introduced in Section 2.1:

• A replaces B: The VR with signature B is replaced by the VR with signature A.

• A before B: The VR with signature A is added before the VR with signature B.

• A after B: The VR with signature A is added after the VR with signature B.

An example for a layer definition model defined using LDL is shown in List. 1. At first,

this example states that CGL factoryVariant refines CGL baseVariant (l. 1). Subse-

quently, the layer definition model defines which concrete refinement operations are per-

formed (ll. 2−3). As explained in Section 2.1, we require each VR to be uniquely identifi-

able by its signature. In List. 1, the first refinement operation (l. 2), which is a replace op-

eration, refers to the signatures EntityExt:AdditionalMethods and ClassMain:Meth-

ods. By default, each VR signature starts with the path to the artifact containing the VR

(relative to the CGL directory) and its name. Hence, the first refinement operation ex-

presses that the artifact EntityExt contains a VR AdditionalMethods and that this VR

replaces the VR with name Methods contained in artifact ClassMain. Signatures for VRs

can also be constructed in different ways, as long as it is possible to uniquely identify

the artifact and the VR in that artifact. The second refinement operation (l. 3) states that

the VR ClassCopyright, which represents a complete template, is added before the VR

Class, which represents a complete template too. If the CGPL contains other CGLs with

refinement operations, these have to be defined in the layer definition model too.

As this example already indicates, layer definition models are not restricted to particular

types of languages. The only decision that has to be made is how to uniquely identify a

VR within an artifact written in a particular language.
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LayerDefinition

1 layer factoryVariant refines baseVariant {

2 EntityExt:AdditionalMethods replaces ClassMain:Methods;

3 ClassCopyright before Class;

4 }

List. 1: A layer factoryVariant that defines two refinements of the layer baseVariant.

3.2 Variant Configuration

Based on the layer definition model, a concrete generator variant can be configured by

defining which CGLs of the CGPL should be selected. As a consequence of this, a con-

crete generator variant will be created which results from composing the VRs of the se-

lected CGLs with the VRs they refine and all other not refined VRs of the selected layers.

This procedure is repeated for the refined CGLs until a CGL is traversed which does not

refine any other CGL. To configure a concrete generator variant, we define a product con-

figuration model using a simple DSL called Product Configuration Language (PCL). In

PCL, the name of the resulting concrete generator variant has to be defined and it has to be

stated which CGLs should be selected. In each PCL, at least one CGL must be selected.

Moreover, it can optionally be defined into which output folder the artifacts of the resulting

generator variant are written.

An example for a product configuration model defined in PCL is shown in List. 2. Accord-

ing to this configuration, the resulting generator variant will be called FactoryGenerator

and this variant is constructed by selecting the CGL factoryVariant. Moreover, the ar-

tifacts of FactoryGenerator would be written to the output folder gen. To infer which

CGLs need to be composed to create the FactoryGenerator, the layer definition model

needs to be analyzed. In this example, the layer definition model is given in List. 1 and it

indicates that the CGL factoryVariant refines CGL baseVariant. Thus, both CGLs

need to be composed to create FactoryGenerator. However, before a concrete generator

variant can be composed, it has to be ensured that the layer definition model is valid, i.e., a

set of layers can be computed and VR refinements are unambiguous. Validation is required

to ensure that the selected code generator product can actually be build.

ProductCfg

1 generator FactoryGenerator {

2 output = "gen";

3 layers = "factoryVariant";

4 }

List. 2: Example for a product configuration model selecting layer factoryVariant

To validate the layer definition model, we map it to colored directed graphs, where each

vertex represents a VR, each edge a refinement, and the color represents the layer a VR

belongs to. First, the refinement operations for the selected layers are processed. For each

refinement two vertices are introduced, if they are not already existing in the graph: one

for the refining VR and one for the refined. The added vertices represent the VRs with all



146 Timo Greifenberg et al.

their contained VRs. Additionally, a directed edge between the two vertices is created. It

points from the refining VR to the refined. Each vertex that represents a VR of the current

layer is colored in a particular color, that represents the layer. The other vertex is colored in

another color that represents the other layer. After processing the refinement operations of

the selected layers, the graph is traversed. Each time a new vertex with a color that has not

yet been processed is found, the layer definition model is processed as described above.

A layer definition model does not induce any conflicts if and only if: 1) for any two vertices

v
q
i and vc

j with colors q and c and and a path (v
q
i ,v

c
j) there exists no other path (vc

j, v
q
i ), i.e.,

the graph does not contain a cycle and 2) there exists no other vertex v
g
f with color g such

that (v
g
f , vc

j) holds, i.e., a VR is not refined by multiple VRs. A cycle in the graph makes

it impossible to perform the composition automatically, as it results in an infinite loop

of refinements with no dedicated end point. Furthermore, if multiple CGLs are selected

and in this selection, a VR is refined by multiple VRs, it cannot be automatically decided

which of these multiple refinements should actually take place in the composition. In both

situations, it is necessary to resolve the problem manually. To derive a valid configuration,

we can employ any graph traversal algorithm and select the different colors of the visited

vertices, which represent the different layers.

In Figure 2, an example for a graphical representation of a layer definition model is given

on the left-hand side. The resulting graph structure is shown on the right-hand side. It is

assumed that artifacts of layer L1 are colored in purple (p), artifacts of L2 are colored in

orange (o) and artifacts of L3 are colored in blue (b). We further assume, that the layer L3

is manually selected and, therefore, layers L2 and L1 are automatically selected because

of their refinements. In this example, there is a path (Cb
1 ,C

p
1 ) as L3 contains a refinement

of a refinement of C1 from L1. In addition, as L2 is automatically selected, the refinements

(Cb
2 ,C

p
2 ) and (Co

2 ,C
p
2 ) produce a conflict.
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Fig. 2: A three-layered example, where layer L3 is manually selected and layers L2 and L1 are auto-

matically selected because of their refinements. This selection introduces a cycle and, thus, a conflict.

3.3 Building Variants by Composition

Based on the layer definition model and the product configuration model, a concrete code

generator variant is created. To this effect, the templates, and corresponding refinements

are composed. A template that is not refined in one of the relevant layers is used as is for

the resulting code generator variant.



Modelling Variability in Template-based Code Generators 147

Refining templates requires proper application of refinement operations prior to variant

composition. To compose a variant, we first need to (a) transitively determine all layers that

have to be additionally selected because of the refinements and (b) compose the resulting

layers to define the code generator variant.

In general, there are two options on composing VRs. The first option is to perform com-

position at run-time of the generator, called generation-time. In this case the VR opera-

tions are executed at generation-time. This means that no VRs are created but support for

generation-time execution of VR operations is required. As an alternative, the VRs can be

composed by creating new VRs which contain the composition results. The main question

that needs to be answered when applying this latter approach is how to deal with before

and after operations. To avoid that the generator framework has to be extended to be

able to handle these operations at generation-time, on template level, before and after

operations can be replaced by template inclusion statements in the according template

language.

The composition of two layers means that all contained artifacts and their VR refinements

are composed. Two layers are composed if and only if there is at least one VR refining

a VR in the opposite layer, according to the understanding of composition as defined for

FOP [Ap13]. If more than two layers are involved in the composition, then we process all

refinements for one VR sequentially in a bottom-up way. If in this sequence a refinement

is a replace operation, then the VR being replaced is substituted by the VR replacing it.

Moreover, if a refinement in a sequence denotes a before or after operation, then the

refining VR is added before (respectively after) the refined VR.

An algorithm for performing this composition would start visiting all selected layers and

then the automatically added layers. In each layer, every refinement is considered in a

bottom-up way, i.e., only the outgoing refinements refining a VR are considered.

4 Demonstrating Example for Variability Regions

In this section, we demonstrate the application of our approach to the code generator

framework openArchitureWare using Xpand [Xp15] as a template language. Motivated

by an industrial use case (see Section 5), the openArchitectureWare framework in version

3.0.1 has been chosen.

4.1 Example Description

In this example, we consider a code generator that processes a class diagram (CD) as

input and translates every class into a Java class with the same name. Each attribute of a

class is translated to a Java variable with a mutator and an accessor method. It also adds

a public constructor with an argument list containing all attributes defined in the class.

For demonstration purposes, we assume the input CD contains the class Person with the

attribute name of type String. On the left-hand side, Figure 3 shows a CD of the resulting

generated class.
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Fig. 3: Overview of the originally generated output (left) and the required output (right).

Another context requires to generate the code for classes differently. Instead of writing a

new code generator from scratch or copying the original one, a new variant of the exist-

ing generator should be created. This variant should validate the argument passed to the

mutator methods and produce a factory method that asserts proper creation arguments. A

CD of the resulting output is depicted in Figure 3 on the right-hand side. Here, the gen-

erated class name corresponds to the input model’s class name, it features an assertion in

setName(), and provides a factory method create() for Person objects that asserts that

the value passed for name actually exists. Please note that, usually the constructor visibil-

ity would be changed too, to prevent others from invoking the public constructor directly.

However, due to limitations of space, we omitted this part and assumed that the constructor

visibility is not changed. To achieve this kind of extensibility, our approach lifts the code

generator to a CGPL by explicitly managing variability.

4.2 openArchitectureWare

The Xpand template language allows to split templates into multiple blocks. Such blocks

begin with the keyword DEFINE and, thus, we henceforth refer to these as DEFINE blocks.

Each DEFINE block is identified by a name and is defined for a specific type of input

model element, called meta model class. For instance, all concrete classes of the CD in

our example are represented by the meta model class MMClass.

List. 3 shows an excerpt of the realization of our example in Xpand. For the sake of brevity,

only those parts are shown that are relevant for the refinement of the template. The first

DEFINE block with name ClassImpl is defined for the meta model class MMClass. If this

DEFINE block is invoked for a concrete class, a new Java file is created for that class, indi-

cated by the FILE statement (l. 2). Expressions encapsulated in [...] lead to the invocation

of the according methods of the meta model classes. The results of these invocations are

inserted into the output at the current location.

To generate the implementation for a class, the DEFINE blocks Constructor (l. 4) and

FurtherMethods (l. 6) are invoked for the class and SetterMethod (l. 5) is invoked for

each attribute of the class by using the EXPAND statement. The string that is constructed in

the according DEFINE blocks is inserted into the output at the current location.
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Xpand

1 [DEFINE ClassImpl FOR MMClass]

2 [FILE ... Name".java"]

3 class [Name] {

4 [EXPAND Constructor]

5 [EXPAND SetterMethod FOREACH Attribute]

6 [EXPAND FurtherMethods]

7 }

8 [ENDFILE]

9 [ENDDEFINE]

10

11 [DEFINE Constructor FOR MMClass]

12 public [Name ](...) {

13 [EXPAND ConstructorImpl]

14 }

15 [ENDDEFINE]

16

17 [DEFINE SetterMethod FOR MMAttribute]

18 public void set[UpperCaseName ]([ Type] [Name]) {

19 [REM]BEGIN VR:SetterMethodBody[ENDREM]

20 this.[Name] = [Name];

21 [REM]END VR:SetterMethodBody[ENDREM]

22 }

23 [ENDDEFINE]

24

25 [DEFINE FurtherMethods FOR MMClass]

26 [ENDDEFINE]

List. 3: Template Class (in Folder base) showing an excerpt of the base template for the

translation of CDs into Java code realized with Xpand.

4.3 Mapping Variability Regions to Templates

In Section 2, we introduced three kinds of VRs: non-empty VRs that refer to a particular

region within an artifact, empty VRs for future extensions and the VR representing the

complete artifact. In Xpand, non-empty VRs can be introduced by defining non-empty

DEFINE blocks and, accordingly, an empty VR can be introduced by declaring an empty

DEFINE block. The most important aspect of every VR is that it has to be uniquely iden-

tifiable through its signature. The signature of a DEFINE block can be derived by the path

to the template and its name. If multiple DEFINE blocks with the same name exist in one

template, the meta model class of such a DEFINE block has to be stated in the signature

as well. Otherwise, it cannot be differentiated between the different blocks with the same

name. In addition, the complete template represents a VR as well with the path to the

template and its name representing the signature of this VR.

Besides interpreting every DEFINE block as one VR, it is possible to introduce further VRs

into Xpand templates explicitly by using, e.g., named comments around the correspond-

ing region in the template. The advantage of using comments for this is that the template
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language does not have to be extended and this approach is applicable to all template lan-

guages supporting comments. This approach is comparable to utilizing protected regions

for integrating handwritten and generated code [Gr15], as there, comments mark the re-

gions into which handwritten code can be inserted. List. 3 shows an example in lines 19

to 21, in which the body of the setter method is contained in the VR SetterMethodBody.

The start and the end of the VR SetterMethodBody is denoted through comments, repre-

sented by REM and ENDREM, in which the name of the VR is defined. This comment-based

approach is used here only for demonstration purposes, to illustrate how it can be ap-

plied. When using Xpand, instead, a separate DEFINE block could have been used as well.

Even though this approach allows for introducing any kind of VR into a template, this

approach is rather fragile, as a comment can be changed by accident easily. Moreover, a

template might contain several other comments which makes it more difficult to identify

VRs marked by comments.

4.4 Variability Region Refinements

Using the template introduced in List. 3, we show how VR refinement operations can be

mapped to concepts in Xpand. This is done by using the layer definition model shown in

List. 4. Moreover, List. 5 illustrates the refining template used for the example.

LayerDefinition

1 layer factoryVariant refines baseVariant {

2 base.ClassWithFact:FurtherMethods

3 replaces base.Class:FurtherMethods;

4

5 base.ClassWithFact:Method.SetterMethodBody

6 replaces base.Class:SetterMethod.SetterMethodBody;

7 }

List. 4: Layer definition model for Xpand realization.

As indicated by the first refinement operation, the VR FurtherMethods, contained in

template ClassWithFact (ll. 1-8 of List. 5) which is located in folder base, replaces

the empty VR FurtherMethods from template Class (ll. 25-26 of List. 3), which is

located in folder base too. By means of this, the factory method create() is generated

additionally.

Furthermore, the VR SetterMethodBody contained in the DEFINE block Method in tem-

plate ClassWithFact (ll. 11-14 of List. 5) replaces the VR SetterMethodBody, con-

tained in the DEFINE block SetterMethod in template Class (ll. 19-21 of List. 3). The

comments denoting the start and the end of the VR SetterMethodBody are defined within

a DEFINE block, as otherwise the resulting template would be syntactically wrong. This

last refinement operation is responsible for introducing assert statements at the beginning

of the setter methods. For this purpose, it takes advantage of the INCLUDE-SUPER state-

ment, which we introduced to include the original content of the refined DEFINE block.
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Consequently, the original content is inserted after the assert statement.
Xpand

1 [DEFINE FurtherMethods FOR MMClass]

2 public static [Name] create (...) {

3 [FOREACH Attribute AS at]

4 assert ([at.Name] != null);

5 [ENDFOREACH]

6 return new [Name ](...);

7 }

8 [ENDDEFINE]

9

10 [DEFINE Method FOR MMClass]

11 [REM]BEGIN VR:SetterMethodBody[ENDREM]

12 assert ([Name] != null);

13 [REM][INCLUDE -SUPER][ ENDREM]

14 [REM]END VR:SetterMethodBody[ENDREM]

15 [ENDDEFINE]

List. 5: Template ClassWithFact (in Folder base) showing an excerpt of the refining template

for the translation of CDs into Java code realized with Xpand.

Please note that, it would not be possible to implement this variability using the XPand

language constructs of the used XPand version - only later versions of XPand provide

means to customize a code generator. Hence, without our approach, a copy of the original

code generator variant would have to be created to develop the shown code generator

variant. The decision to use this particular XPand version was rooted in the fact that this

version was used in a real-world code generator to which we applied our approach in a

case study (see Section 5).

5 Industrial Case Study

The approach has been applied to a large real-world Java code generator which processes

UML CDs as input. For the contained classes, it generates, among other things, Java

classes with mutator and accessor methods. Moreover, each Java class contains additional

inner classes and accessor methods that expose the data in a different way and allow a

special access to the Java fields. This code generator variant is in the following referred to

by OV1. Besides this existing code generator OV1, a variant of this code generator OV2

should be build which:

• does not generate the additional inner classes and special access methods.

• does not generate a normal Java field for all UML associations of the corresponding

UML class but which generates a field of a special type for UML associations to

UML classes tagged with a specific stereotype.

• names the resulting classes according to the originally named classes but with a new

suffix, to be able to differentiate between the original and the new classes easily.
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The objective of our case study is to demonstrate the usefulness and applicability of our

approach to implement a CGPL for a real-world code generator and to compare it to the

classical informal approach (copy-paste) for creating CGPLs. For this purpose, we derived

the following research questions:

• Is it feasible to apply the approach to establish a CGPL for real-world code generator

variants?

• Is the application of the approach superior to the informal reuse of code generators

through copy-paste in terms of complexity of the involved artifacts?

5.1 Applicability to Real-World Code Generators

In order to better understand the usefulness of the approach, we first implemented the vari-

ant OV 2 through informal reuse by doing copy-paste of OV 1. Then, we applied our ap-

proach to realize both generator variants with our approach. For this purpose, we defined

a CGL NV1 which contains the common parts of OV1 and OV2. Moreover, we defined a

CGL NV2 which refines NV1 in such a way that the generator resulting from the compo-

sition of NV1 and NV2 generates the same code as OV1. Analogously, we defined a CGL

NV3 which refines NV1 such that the generator resulting from the composition of NV1 and

NV3 generates the same code as OV2. Hence, we assumed that the code generator variants

resulting from the composition with the base layer NV1 must generate the same code as

the original code generators - neglecting whitespaces for the sake of simplification.

Using our approach, we were able to derive two code generator variants which generate

the same code as code generator variants which did not use our approach. In particular, the

presented refinement operations were sufficient to realize the CGPL. For these refinement

operations, only replace refinement operations have been used, as the developers of the

original code generator preferred these over introducing before or after operations.

5.2 Improvements over Informal Reuse

To answer the second research question, we compared the variants OV1 and OV2 with

the variants NV1, NV2 and NV3. To increase comparability, we removed those templates

from OV2 which were copied from OV1 but not needed for that variant. However, we

applied our concept not only on templates, but also on helper classes which can contain

more complex functionality which can be accessed from templates. In this use case, helper

classes were implemented in Java. The only refinement operation we used in this context

was the replace operation, which expresses that the implementation of one helper method

is replaced by the implementation of another helper method.

To perform the comparison, we measured the templates lines of code (TLOC) and the

helper lines of code (HLOC) for OV1, OV2, NV1, NV2 and NV3. To compare our approach

with the copy-paste approach, we compared the total TLOC and HLOC of OV1 and OV2

with that of NV1, NV2 and NV3.
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OV1 OV2 ΣO NV1 NV2 NV3 ΣN

TLOC 5563 2260 7823 1882 4000 349 6231

Number DEFINE 327 146 473 189 267 37 493

Number refined DEFINE - - - - 94 36 130

HLOC 929 929 (665) 1858 (1594) 630 330 49 1009

Number helper 100 100 (79) 200 (179) 78 34 5 117

Number refined helper - - - - 8 8 16

Tab. 1: Case study results: TLOC and HLOC for the different variants

Table 1 gives an overview over the measured values for the original generator OV1 and

the variant OV2 created through copy-paste of OV1 and the generator variants obtained

by using our approach. The primary numbers relevant for this comparison are TLOC and

HLOC. For OV2 two HLOC numbers are given: the first results from simple copy-paste

of the original helpers, the second number refers to the case that only the helpers used by

the variant are counted. Thus, the existing helpers have been analyzed and the helpers not

needed were removed. For NV2 and NV3, the number of helpers refers to the number of

additionally introduced helper methods. ΣO refers to the sum of the values of both variants

OV1 and OV2. Accordingly, ΣN refers to the sum of the values for the variants NV1, NV2

and NV3.

As can be seen in Table 1, we can reduce the TLOC size to approximately 79% of the

original code generators using our approach. Moreover, we can reduce the HLOC size to

approximately 54% respectively 63% of the original code generators.

In addition to that, Table 1 shows that the total number of DEFINE blocks is comparable

for both variants. Even though DEFINE blocks can potentially be reused by multiple vari-

ants, this effect does not become apparent in this case, as only two generator variants are

created and for each refinement of a DEFINE block, one DEFINE was introduced, increas-

ing the total number of DEFINE blocks. For helper methods, a significant reduction can be

observed, as most helper methods can be reused by both generator variants and only few

refinements were necessary.

6 Related Work

Different annotative, compositional, and transformational modeling approaches have been

proposed to express variability in the solution space [Sc12]. Annotative approaches specify

all variants in one model. Compositional approaches combine different model fragments to

derive a specific variant [HW07, NK08]. Delta modeling [Ha11] applies transformations

to a core model. Only few of them have been successfully applied to CGPLs.

In the following, we present existing approaches to address variability in code generators

with a special focus on existing code generator frameworks and how they support variabil-

ity. The concepts we presented are independent of a concrete code generator framework
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and template language. Another difference to most existing approaches is that arbitrary

regions can be marked as VRs.

In the Genesys [JMS08] framework, new generators are established by composing existing

Service Independent Building Blocks (SIBs), the atomic unit provided for composition.

This approach has been evaluated in many case studies: in most cases, new generators

could be derived by the introduction of a small set of new SIBs and a slightly modified

composition. This specific mapping represents one point of variation, which can easily

be adapted for different targets. The main part of variation are the SIBs, which can be

modified via configuration parameters, via a modification of the their execution flow or by

replacing a service adapter, which contains execution code for a specific task. In contrast

to our approach, Genesys defines a set of different explicit concepts (parameter, service

adapters, outgoing branches) to achieve the necessary variation. Our proposed approach of

VRs allows to introduce variation points on different kinds of development artifacts and

the related before and after operations can be used to manipulate the execution flow

where necessary, too. This way it is also possible to apply variation points to templates,

while in [JMS08] templates are modified directly and no variation points are introduced

on that level.

[VG07b] highlights the necessity to combine model-to-model transformations and template-

based code generation to perform efficient code generation. They suggest that all structural

differences on model level should be handled by the transformation layer. [PT02] follow

this by pointing out that the generator should handle only two kinds of variation: target

variation and the establishment of higher-level primitives based on low-level primitives.

Our approach does not provide a guideline on which level which kind of variation should

be established, but represents a general concept, to be able to apply variation points where

required. If a model-to-model transformation is performed via Java helper classes, corre-

sponding variation can also be applied on that level.

Acceleo [Ac15] provides the concept of dynamic overriding to customize existing gen-

erators. To dynamically override templates, a module (which can comprise multiple tem-

plates) must extend a module of the existing generator. The extending modules are treated

with a higher priority than overridden modules. Thus, the overriding template is invoked

instead of the existing template. Templates can only be exchanged as a whole, no variation

points can be introduced inside a template.

The template language Xpand supports the customization of code generators using aspect-

oriented programming (AOP) [VG07a]. Aspects can be provided which contain template

code that is, e.g., invoked instead of code contained in a specific block in the template.

Although the original template definition is intercepted, the original overridden template

code can still be called in the aspect code [El11]. Our approach is motivated by the con-

cepts applied in Xpand. The main difference to our approach is that our approach does not

require support for AOP in the code generator. In Xpand’s successor Xtend [Xt15], code

generators are composed of extension methods. To customize a code generator written in

Xtend, any extension method of a code generator can be exchanged by means of depen-

dency injection. However, these concepts are completely based on language constructs. In

contrast, our approach is more general and can be realized with different languages.
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7 Conclusion

Monolithic code generators are hard to adapt to new requirements and target platforms and,

thus, are hardly reusable in different contexts, as they are not designed for adaptations. To

overcome this limitation regarding customizations, code generator variability needs to be

handled as a primary concern.

We have presented an approach for modeling variability in template-based code genera-

tors. This approach relies on variability regions (VR) that define extension points in arti-

facts. Furthermore, since it is an extension of feature-oriented programming, the artifacts

are structured in layers that represent code generator features. We additionally define three

refinement operations to extend VRs. In order to extend a code generator with a new fea-

ture, a new layer can be introduced and existing VRs can be refined. The benefit of the

proposed concept is that it is independent of any language that is used for code generator

development. We achieve this by introducing a layer definition model language that can

be used with any other language. By means of this, the approach facilitates reusing and

customizing code generators.
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