Automating Product Derivation in
Software Product Line Engineering

Goetz Botterweck Kwanwoo Lee Steffen Thiel
Lero, Univ. of Limerick Hansung University Lero, Univ. of Limerick
Limerick, Ireland Seoul, South Korea Limerick, Ireland

goetz.botterweck @lero.ie kwlee @hansung.ac.kr steffen.thiel @lero.ie

Abstract: This paper deals with deriving software products from a software product
line (SPL) in an efficient and automated way. We present an approach that (1) repres-
ents the SPL with a set of integrated models, (2) specifies variability and configuration
options for possible product variants and (3) automatically derives executable products
with model transformations and aspect-oriented techniques. The approach is discussed
with a sample SPL of scientific calculators.

1 Introduction

A software product line (SPL) is a set of software-intensive systems sharing a common,
managed set of features that are developed from a common set of core assets in a prescribed
way [CNO2]. SPL engineering has rapidly emerged as a viable and important software
development activity during the last few years. It allows companies such as Philips, Bosch,
and Nokia to build functionally related products with a minimum of technical diversity and
thus to achieve significant improvements in time-to-market, cost, productivity, and quality
(e.g., [CNO2, HFT04]). SPL engineering differs from developing single products in that
variability is an inherent part of the development. Products are built by resolving this
variability in order to implement customer-specific functionality. This is usually done in a
dedicated product derivation process during application engineering.

Many companies attempt to achieve economies of scale in SPL engineering while keeping
the number of product variants in their product lines high. Those large-scale product lines
easily comprise hundreds of products and incorporate thousands of variation points and
configuration parameters. This is especially the case in the mobile devices and automotive
domain (e.g., [MHO3, STBT04]). However, recent studies show that much of the work
on product derivation is carried out manually (e.g., [DSB05]). This makes systematic pro-
duct derivation extremely difficult, error-prone, and time consuming and compromises the
benefits of product line adoption significantly.

In this paper we present an approach and research tool that support automated product
derivation in software product lines. The approach integrates feature modelling and aspect-
oriented programming (AOP) and is based on model-driven techniques. It provides the
expressive means to describe a product line from two perspectives: (i) the variability and
configuration options and (ii) implementation strategies for those options.

177

[Feawres] Model o implementation implementation tegend

Artefact

%
g Feature
Meta-model ‘ A ‘ ‘ s ‘ ‘ e ‘

1 -----instance of----3

o 2) : ——dataflow—w

Feature Feature - traceability-—-
Analysis (™ \implementation, ‘} ‘} 1

i Aspects as
. . Implementatjon | .|
e Feature. (Aspects/Clasies) £-
Feature; —
Model Mapping Model
Classes as
Java
Source Code
r —
© O seivation e
Derivation of
Product Feature| Aspect oon
- | il L= Configuration
Requirements Configuration Configuratipn Fles (M2)
(M2m)
Application Implementation Implementation 9 Assembled
—— —— Aspect
Feature Configuration Configuration [—»(P*C Executable

Model (Model) (Text) Product

Product Line
Requirements

Aspect)
Source Code

Domain Engineering

w
g
@
)
=
@
£
fr
<
g
®
2
2
g
<

Abbildung 1: Overview of the presented approach.

The presented approach differs from existing research as it provides the explicit modelling
of dependencies among features and the intentional separation of dependency implemen-
tations from feature implementations. This allows a direct mapping of feature dependen-
cies to the corresponding dependency implementations which results in reduced coupling
among feature implementation components, less side-effects, and, consequently, a more
effective product derivation.

To facilitate the approach we have developed an interactive and visual derivation tool
which supports the automated derivation of executable products based on a feature confi-
guration. The remainder of the paper is structured as follows: Section 2 describes how we
model a SPL, Section 3 explains how these models are used in our automated product deri-
vation approach. In Section 4 our approach is compared with other related work. Section 5
concludes the paper.

2 Creating and Modelling a Software Product Line

In our approach the product line is described in terms of three models and two types of
source code artefacts (see the markers B to B in Figure 1). These models and artefacts
are created in a two-step process of Feature Analysis and Feature Implementation. We
illustrate our approach based on a sample product line of calculator applications, which we
created by refactoring the open source Java application Java Scientific Calculator [jscO8].

During Feature Analysis @ a Domain Feature Model R is created, which describes the ca-
pabilities of the SPL and potential functionality of products from a stakeholder’s point of
view. In addition, this model captures various dependencies among features: Design-time

178

DI = Design-time inclusion Scientific
RM = Run-time modification Calculator PL

REA = Run-time exclusive activation
Displa Number
pay Buttons

Scientific
Operations

0]
Number
Systems

Binary

Editing H Mode H Notation ‘ Memory H History

Size Angle

Abbildung 2: Feature Model (excerpt).

Combinat.
Operations

Exponential
Operations

Trigonom.
Operations

Boolean
Operations

Hexadec.

dependencies limit the available choices and guide the engineer during feature configu-
ration ©. Run-time dependencies describe the interaction among features in the executed
product. Figure 2 shows the domain feature model of our Calculator SPL with mandatory
features, e.g., Display, and optional features, e.g., Editing. It also shows some de-
pendencies, some of which are design-time dependencies (d6=BooleanOperations
requires NumberSystems) and some run-time dependencies (d5=History modifies
the behaviour of Angle).

During Feature Implementation @ the capabilities of the software product line are imple-
mented with AspectJ B and Java B. The Implementation Model @, described in our AML
(Aspect-oriented implementation Modelling Language), provides an abstract view on this
implementation. Just like the corresponding textual code, the AML model contains con-
cepts like Aspect or Class but describes them as model elements. This allows to describe
mappings B between features and the corresponding implementation components, which
is necessary to select implementation units for a feature configuration.

Figure 3 shows some of these mappings for our Calculator example. For instance, the
feature Hist ory is mapped to the package history and the dependency d5 is mapped
to the aspectual component AngleHistoryDep.aj.

3 Product Derivation

In the preceding section we discussed how the software product line is created and how
the elicited knowledge is captured. This section describes how this knowledge is exploited
during product derivation to create the assembled executable products.

Given the product-specific requirements, we start creating the product by first performing
interactive Feature Configuration ©. Since this activity involves the interpretation of re-
quirements, it cannot be automated. However, it can be supported by interactive tools
which provide visual guidance [BNP107], e.g., by providing feedback based on cons-
traints which have been captured in the Domain Feature Model E.

179

‘ Scientific Calculator PL ‘

‘ Mode ‘ ‘ Notation ‘ ‘ History ‘ ‘ Number Sys. ‘ ‘ Off ‘
Y

//

Feature Model

v
]
'
.
'
'
.
@ '
& <d4 : REA>/<d5 : RM) <d3 : RM) :
‘o H H H H H H
% . I‘ . :
> ModeHistory AngleHistory Notation :‘ NumsysHistory H
_ Dep.aj Dep.aj HlstoryDep aj ' Dep.aj E
: ' ;
.
E o Up \ OffHistory
=9 . R
2 S © |calculatorPanel Button.java Dep.aj]
i (& Hi ;
c I istory.aj Down CalculatorAppl EquaIsButton History
QE) Button.java etHistory.aj History.aj Item.java
]
== ! !
g o AV i i
= £ Calculator Calculator Calculator Equals off
= é Panel.java Button.java Applet.java Button.java Button.java

Abbildung 3: Feature-Implementation Mappings.

The feature configuration is used in Automated Product Derivation processes (0 to @), to
derive assembled executable products. The process starts with a model-to-model transfor-
mation @, written in ATL (Atlas Transformation Language), that creates an Implementation
Configuration model. This model describes all components that have to be included to im-
plement this particular feature configuration. The model is then processed by a model-to-
text transformation ® which generates an equivalent textual configuration. Finally, AspectJ
mechanisms are used to perform the assembly of the particular product @.

Our goal is to automate the product derivation as far as possible. Within that tool chain, on-
ly the feature configuration @ has to be performed interactively. The remaining processes
(@ to @) can be executed mechanically. To fully automate the approach we use Ant scripts,
which orchestrate the overall process and custom Ant tasks, which integrate the various
tools into this tool chain. In summary, this turns a product-specific feature configuration
into an Assembled Executable Product.

4 Related Work

AOP techniques were originally developed to modularise crosscutting concerns. Recently,
they have been used for modularising feature implementation. Godil et al. [GJ05] and
Liu et al. [LBLO6] applied AOP to the feature-oriented refactoring of Prevayler, an open
source Java application.

Feature-oriented programming (FOP) [Bat04] is another option to implement features.
FOP takes features as first-class design and implementation entities, i.e., features are desi-
gned and implemented as program refinements and composed to form a complete system.

180

Other techniques such as Caesar [MOO04] or Framed Aspect [LR04], can be used for feature
implementation. Such approaches typically support only simple feature-implementation
mappings, which can lead to problems when features depend on each other. Recent-
ly, Lee et al. [LKKO6] identified problems with simple mappings between features and
aspects and proposed guidelines on how feature dependency information can be used for
implementing features using AOP. The approach presented here differs from [LKKO06] in
that a systematic product derivation process is introduced.

Our approach deals with product derivation based on a feature configuration. The work
in [CAO5] uses templates for mapping features to different kinds of models and a model-
to-model transformation to instantiate these models. However, in [CAOS5] the rules for
filtering are described as OCL constraints, whereas we describe them as a model transfor-
mation which can partly be derived from the underlying meta-model.

The work in [VGO07] is similar to our approach in that domain artifacts are expressed using
models, which are then transformed. AOP is used to implement crosscutting features on
code level. However, the links between features and aspects are not made explicit.

5 Conclusions

Our primary goal is to make product derivation more efficient. To this end, we (1) inte-
grate feature modelling and AOP to structure the SPL implementation to facilitate product
derivation and (2) define a model-driven product derivation process, which transforms a
feature configuration into an executable product. This process is implemented as a research
prototype, which automatically performs the necessary steps.

Although Aspect] has been used to demonstrate the applicability of the proposed me-
thod, more advanced techniques can be applied, e.g., Aspect-oriented architecture mo-
delling [KTGT06]. To support software engineers in the handling of large SPLs we are
currently extending our graphical modelling tools with improved support for the feature-
implementation mappings. In addition to this we are working on techniques for reverse en-
gineering, e.g., by extracting an AML implementation model from existing Java/Aspect]
code bases. These techniques can then be used for automated analyses, e.g., to check an
implementation for consistency with a specified design [JBOS].

6 Acknowledgments

This work was supported, in part, by Science Foundation Ireland grant 03/CE2/1303_1 to
Lero — the Irish Software Engineering Research Centre (www.lero.ie).

181

Literatur

[Bat04]

[BNPT07]

[CAO5]
[CNO2]
[DSBO5]
[GJO5]

[HFTO04]

[JBOS8]

[jsc08]
[KTGT06]

[LBLO6]

[LKKO06]

[LRO4]
[MHO3]

[MO04]

[STBT04]

[VGO7]

Don Batory. Feature-Oriented Programming and the AHEAD Tool Suite. In ICSE '04,
Seiten 702-703, Washington, DC, USA, 2004. IEEE Computer Society.

Goetz Botterweck, Daren Nestor, André Preussner, Ciardn Cawley und Steffen Thiel.
Towards Supporting Feature Configuration by Interactive Visualisation. In ViSPLE
2007, collocated with SPLC 2007, Kyoto, Japan, September 10-14, 2007 2007.

Krzysztof Czarnecki und Michal Antkiewicz. Mapping Features to Models: A Template
Approach Based on Superimposed Variants. In GPCE’05, 2005.

Paul Clements und Linda M. Northrop. Software Product Lines: Practices and Patterns.
The SEI series in software engineering. Addison-Wesley, Boston, 2002.

Sybren Deelstra, Marco Sinnema und Jan Bosch. Product derivation in software product
families: a case study. The Journal of Systems and Software, 74:173-194, 2005.

Irum Godil und Hans-Arno Jacobsen. Horizontal Decomposition of Prevayler. In CAS-
CON 2005, Seiten 83—100, 2005.

A. Hein, T. Fischer und S. Thiel. Produktlinienentwicklung fiir Fahrerassistenzsyste-
me. In G. Bockle, P. Knauber, K. Pohl und K. Schmid, Hrsg., Software-Produktlinien:
Methoden, Einfiihrung und Praxis, Seiten 193-205. dpunkt-Verlag, 2004.

Mikolas Janota und Goetz Botterweck. Formal Approach to Integrating Feature and
Architecture Models. In FASE 2008, Budapest, Hungary, 29 March - 6 April 2008.

Java Scientific Calculator. http://jscicalc.sourceforge.net, May 2008.

Ivan Krechetov, Bedir Tekinerdogan, Alessandro Garcia, Christina Chavez und Uira
Kulesza. Towards an Integrated Aspect-Oriented Modeling Approach for Software Ar-
chitecture Design. In AOM 06, collocated with AOSD 2006, 2006.

Jia Liu, Don Batory und Christian Lengauer. Feature Oriented Refactoring of Legacy
Applications. In ICSE 2006, Seiten 112-121, 2006.

Kwanwoo Lee, Kyo C. Kang und Minseong Kim. Combining Feature-Oriented Analy-
sis and Aspect-Oriented Programming for Product Line Asset Development. In SPLC
2006, 2006.

Neil Loughran und Awais Rashid. Framed Aspects: Supporting Variability and Confi-
gurability for AOP. In ICSR 2004, Seiten 127-140, Madrid, Spain, July 2004. Springer.

Allessandro Maccari und Anders Heie. Managing Infinite Variability. In Software Va-
riability Management Workshop, Seiten 28-34, February 2003.

Mira Mezini und Klaus Ostermann. Variability Management with Feature-Oriented
Programming and Aspects. In SIGSOFT 2004, Seiten 127-136, Newport Beach, CA,
2004.

Mirjam Steger, Christian Tischer, Birgit Boss, Andreas Miiller, Oliver Pertler, Wolfgang
Stolz und Stefan Ferber. Introducing PLA at Bosch Gasoline Systems: Experiences and
Practices. In SPLC 2004, Seiten 34-50, Boston, MA, USA, 2004.

Markus Volter und Iris Groher. Product Line Implementation using Aspect-Oriented
and Model-Driven Software Development. In SPLC 2007, Kyoto, Japan, 2007.

182

