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E�cient Storage and Analysis of Genome Data in Databases
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Abstract: Genome-analysis enables researchers to detect mutations within genomes and deduce their
consequences. Researchers need reliable analysis platforms to ensure reproducible and comprehensive
analysis results. Database systems provide vital support to implement the required sustainable
procedures. Nevertheless, they are not used throughout the complete genome-analysis process, because
(1) database systems su�er from high storage overhead for genome data and (2) they introduce
overhead during domain-specific analysis. To overcome these limitations, we integrate genome-
specific compression into database systems using a specialized database schema. Thus, we can reduce
the storage overhead to 30%. Moreover, we can exploit genome-data characteristics during query
processing allowing us to analyze real-world data sets up to five times faster than specialized analysis
tools and eight times faster than a straightforward database approach.
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1 Introduction

Genome sequencing and analysis promises to detect, predict and prevent diseases based on
genetic variations more e�ciently than traditional medicine can do [Br13]. Due to next-
generation sequencing techniques, genome sequencing becomes cheaper and faster [Li12].
For that reason, reading genome sequences via sequencing machines is not the bottleneck
anymore, but the management, analysis and assessment of large amounts of genome data,
i.e. detecting genetic variations and investigating their consequences [Ma10].

To detect genetic variations, researchers use specialized tools. To investigate the con-
sequences of potential variations, they use database systems that allow for convenient
integration with other data sources [Ku07; Le06; Sh05; Tö08]. This separation introduces
additional and partly manual e�ort to ensure reproducibility of results [Sa13]. Avoiding
this separation enables researchers to analyze genomes completely within the database
system. As a consequence, we can declaratively analyze genome data and improve the
comprehensibility of analysis results [RB09]. Furthermore, database systems are able to
provide comprehensive data-management features, such as provenance tracking [EOA07] or
annotation management [Bh04], that would be available throughout the complete genome
analysis process.
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Our experiments on integrating genome-analysis tasks, such as detecting genetic variation,
into a database system (DBS) demonstrate that we can achieve competitive runtime
performance compared to specialized analysis tools. However, DBSs lack appropriate
light-weight compression techniques for genome data. For that reason, storage consumption
increases by more than a factor of two compared to state-of-the-art flat files, because genome
data consists mostly of unique strings that are hard to compress using standard light-weight
compression schemes. Additionally, unfavorable string conversions during genome data
processing increase time to knowledge within a DBS. Common genome-data encodings
represent necessary analysis information implicitly within strings. Considering the required
string manipulations, DBSs usually cannot keep pace with specialized analysis tools. To
overcome both issues, we exploit genome-specific data and query characteristics within
DBSs leading to a database-native application design. We make the following contributions:

1. We identify genome-data related bottlenecks in DBSs by performing an in-depth
analysis of a straightforward database-approach for variant detection. As optimization
targets, we identify missing genome-specific compression schemes and on-the-fly
string conversion of genome data via user-defined functions (UDFs).

2. We enable light-weight genome-specific compression for DBSs. To this end, we use
a specialized database schema allowing us to integrate genome-specific compression.
At the same time, it allows us to perform string conversions once during data import,
which improves analysis runtime by up to a factor of 1.5.

3. We propose a genome-specific filtering technique called base pruning. Base pruning
leverages the characteristic of genome data to be very similar to a given reference
genome reducing the number of genome positions to be processed and improving
runtime by up to a factor of 5.

4. We combine genome-specific compression and query optimization to improve
overall performance. Therefore, we outline how we can leverage reference-based
compressed data to reduce the runtime of base pruning. Moreover, we explain why
heavy-weight compression limits the overall benefit of base pruning.

Compared to state-of-the-art flat file formats, our techniques can reduce the storage overhead
of a DBS approach to 30% without using heavy-weight compression. At the same time, we
can detect genetic variation within whole genomes up to five times faster than state-of-the-art
analysis tools and up to eight times faster than a straightforward DBS approach.

The remainder of the paper is structured as follows. In Section 2, we introduce the basics
of variant detection. In Section 3, we assess a straightforward database-approach for
variant detection regarding storage consumption and analysis performance to identify
optimization targets. In Section 4, we introduce genome-specific compression schemes for
database systems. In Section 5, we explain base pruning. In Section 6, we evaluate storage
consumption and query performance of our approaches using three real world data sets. In
Section 7, we provide an overview of related work.

2 Detecting genetic variation

In this section, we outline the basics of variant detection. First, we motivate the need
for variant detection. Then, we describe an important variant detection approach: Single
Nucleotide Variant (SNV) calling. Finally, we explain a common genome data encoding.
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2.1 DNA sequencing and read mapping
DNA molecules encode genetic information via sequences of the four (nucleo)bases Adenine
(A), Cytosine (C), Guanine (G) and Thymine (T). DNA sequencing machines make this
genetic information digitally readable. To this end, they “read” the sequence of bases within
DNA molecules and generate sequences of the characters A, C, G, and T. Therefore, the
generated sequences are called reads. DNA sequencing techniques are not capable to process
complete DNA molecules, but small parts of them only [Qu12]. Thus, in order to reconstruct
the sample’s complete genome, reads must be assembled.
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Fig. 1: From mapped reads to SNVs: A SNV
caller 1 aggregates bases of mapped reads 2 per
genome position, derives a genotype 3 and calls a
SNV if genotype and reference base di�er.

A common technique to assemble reads
is read mapping [LH10]. Read mapping
tools leverage already known reference se-
quences to reconstruct the sample’s genome
by mapping reads to the best matching po-
sition. In Figure 1, we depict the mapping
of two reads (chains of colored circles) to a
reference sequence (chain of black circles).
Read mapping is a challenging task and
has to cope with several di�culties such
as deletions, insertions and mismatches (cf.
circles with, symbol). These variances can
be real variations but also DNA sequencing
errors. Therefore, every base in a read has

an associated quality value indicating the probability that the base is wrong. In this work,
we refer to the output of read mappers using the term genome data.

2.2 Variant calling
Usually, scientists are interested in genome sites that di�er from a given reference used
during read mapping. Such genome sites are called variants. The process of detecting
variants is called variant calling, i.e. determining whether a variant is present or not based
on the mapped reads and associated quality information [Ni11]. A special class of variants
are SNVs, i.e. di�ering genotypes at single genome positions (cf. purple circle in Figure 1).
The detection of SNVs plays a vital role in genome analysis, because these are known to
trigger diseases such as cancer [Ma13]. According to Nielsen et al., two general approaches
for SNV calling exist: (1) frequency approaches with fixed cut-o� rules and (2) probabilistic
approaches incorporating uncertainty in data due to base call and read mapping errors [Ni11].
Independent of the concrete SNV calling approach, the general idea is to aggregate all
bases that are mapped to a specific genome position. We depict this idea in Figure 1. The
SNV caller (black box) consumes all bases that are mapped to the same genome position
and computes a genotype. Afterwards, the SNV caller compares the genotype with the
corresponding reference base. In case of a di�erence, it calls a SNV.

2.3 Encoding of reads
Existing flat-file formats for genome data are optimized to reduce storage consumption.
Thus, they encode much information implicitly. For example, the Sequence Alignment/
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Fig. 2: A sequence-centric schema implicitly models read mapping information similar to flat files. In
contrast, a base-centric schema makes mapping information explicit allowing for direct processing.

Map (SAM) format encodes the actual mapping of a read to a given reference as triple of
a Start position, DNA sequence and CIGAR string [SA15]. The CIGAR string encodes
whether a specific base within the DNA sequence is deleted, inserted, mismatched or
matched and, thus, has impact on the actual position of the base. Thus, before performing
SNV calling, position information of bases must be made explicit.

3 A straightforward database approach for SNV calling

A straightforward approach for SNV calling using database systems is to store reads
similar to the SAM format and to process them similar to specialized analysis tools such
as �������� [Li09]. In the left part of Figure 2, we depict the basic idea. For every
read in table Reads (R), we store the sequence of bases (R.Sequence) together with the
CIGAR string7, the corresponding base call quality values (R.Base_Call_Qualities)
and the start position (R.Start_Position). In table Reference_Sequence (RS), we
store the reference sequence as string (RS.Sequence). We call this data representation
sequence-centric database schema.

To perform SNV calling, reads must be converted to get explicit access to all bases mapped to
a specific genome position (cf. Section 2.3). For example, the analysis tool �������� [Li09]
transforms mapped reads into an intermediate data structure called pileup. A pileup lists all
bases that map to a specific genome position. Then, �������� computes genotypes by
aggregating the bases in a pileup. We emulate this approach in a database-native way relying
on standard database operators where possible. First, we convert the data via a UDF into an
intermediate base-centric data representation [DBS14] making read mapping information
explicitly available as shown in the right part of Figure 2. The reference sequence and the
mapped reads are split into single bases by storing them, literally spoken, vertically in tables
Reference_Bases (RB) and Sample_Bases (SB)8. Using a foreign-key relationship
(cf. SB.Reference_Base_ID), we can explicitly encode which sample base belongs to
which reference base. Further information such as read containment (SB.Read_ID), position
within the genome (RB.Position) and base call qualities (SB.Base_Quality) is stored
in adjacent columns. The explicit mapping information allows us to process genome data

7 For simplicity, we only consider mismatching bases and omit inserted or deleted bases.
8 Using the base-centric database schema, we already apply CIGAR operations to the base values of reads.
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Fig. 3: The base-centric schema allows for direct access and processing of mapped reads via relational
database operators.

as shown in Figure 3 using relational database operators. To process a genome region
of interest, we join the related bases and aggregate them by genome position using a
domain-specific aggregation function called genotype. Finally, we filter genotypes that di�er
from the reference. In the example, we found position four to be a SNV.

In the following, we assess the straightforward approach regarding storage consumption
and SNV calling performance to identify advantages and disadvantages. Of course, we
have to distinguish between the logical data representation and the physical one. Without
loss of generality, we assume that the physical data representation resembles the logical
one. As evaluation system, we use CoGaDB [BFT16], a main memory database system,
which stores and processes data column oriented similar to MonetDB. Furthermore, we
chose CoGaDB, because it provides light-weight compression techniques that we use as
baseline for our proposed optimizations. We use a complete human genome provided by the
1000 genomes project that comprises ca. 14 billion mapped sample bases to process. More
information on the used data set and the evaluation machine can be found in Section 6.

3.1 Storage consumption
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Fig. 4: A DBS approach requires three
to four times more storage, which is due
to missing compression capabilities.

E�ciently storing genome data is hard to achieve as it
mainly consists of unique strings. For example, reads
are mostly unique to prevent a possible bias within
analysis results [De11]. Thus, light-weight string
compression schemes such as dictionary encoding
increase storage size rather than compressing data.
Therefore, we do not compress RS.Sequence and
R.Sequence in a straightforward DBS approach. In
Figure 4, we show the results of the DBS approach
and the compressed SAM formats CRAM [CR15]
and BAM [SA15].

Using the DBS approach, we require 3.7 times more storage space compared to CRAM and
2.6 times more storage compared to BAM. This is mainly due to the limited compression
capabilities for unique strings. Both flat-file formats use heavy-weight compression such as
BGZF encoding. CRAM additionally applies reference-based compression [Hs11].
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3.2 SNV calling runtime

samtools DBS
approach

0

5

10

15

20

UDF

./

�

13.6
16.4

Ru
nt

im
e

(m
in

)

Fig. 5: SNV calling runtime using a DBS
approach is comparable to the highly
optimized ��������.

Now, we compare the SNV calling runtime of
the DBS approach with the analysis tool ���-
����� [Li09]. We show the runtime results in Fig-
ure 5. The DBS approach uses a preloaded database.
S������� accesses flat files stored in a ramdisk.
To make the comparison fair, we compare only the
runtime for detecting SNVs and do not consider post-
processing validations that can be applied to both
approaches. Moreover, we parallelized ��������
to use all available threads, because �������� does
not provide such an option natively.

Considering the overall SNV calling runtime, the DBS approach can be competitive to
��������. The read conversion and aggregation phase dominate the runtime. We can
speedup the aggregation phase using heuristics to reduce the number of groups to be
processed. To speedup the conversion phase, we can integrate domain-specific processing
mechanisms similar to specialized analysis tools such as ��������. These tools rely
on stream processing of genome data and require reads to be sorted by starting position
to guarantee low response time. The sorting allows them to interleave data loading with
conversion and aggregation, because compressed data-blocks read from disk contain reads
of the same genome range. However, we should avoid such black-box behavior within a
DBS, because it limits the transparency and portability and is hard to parallelize [RB09].

3.3 Wanted: Genome-specific extensions

Considering the results of the storage and SNV calling runtime experiments, a straightforward
DBS approach su�ers from missing genome-specific storage and processing capabilities.
To reduce storage consumption, we focus on integrating reference-based compression,
which achieves good compression ratios [Hs11]. Our goal is to integrate reference-based
compression in a light-weight manner to avoid decompression overhead. To improve analysis
performance, we want to provide a data layout that avoids string conversions, because these
are non-relational operations that are hard to optimize by the DBS. In the following section,
we explain how we achieve both goals.

4 Integrating genome-specific compression

State-of-the-art flat-file formats such as CRAM [CR15] use heavy-weight and genome-
specific compression schemes to achieve good compression ratios of genome data. Disk-based
database systems can hide the decompression overhead of heavy-weight compression when
loading data from disk. In contrast, if we use heavy-weight compression in a main-memory
database system, we would sacrifice the performance potentials gained from main-memory
storage of data. Therefore, we aim to integrate genome-specific compression schemes in
a light-weight manner into a DBS reducing decompression overhead by allowing us to
process compressed genome data and to decompress single data items fast.
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4.1 Light-weight reference-based compression

In the following, we explain how we integrate light-weight reference-based compression
into a column-oriented database system. We provide an example in Figure 6.

Reference-based compression [Hs11] is a genome-specific compression scheme. It exploits
read mapping information. Usually, the mapped reads and the reference sequence match
to a high degree. Thus, the idea is to encode the mapped reads according to the reference
sequence. Therefore, we need information about which sample base of a read maps to which
reference base of the reference sequence. In a sequence-centric database schema where
we store reads as strings, the required information is only given implicitly. This leads to
additional overhead when (de-)compressing the data, because we have to extract necessary
information before we can use it. What we essentially need is a mapping between sample
and reference bases. If we introduce this mapping, we logically end up with a base-centric
data representation. Consequently, our idea is to use the base-centric database schema,
that encodes the mapping via a foreign-key relationship (cf. Figure 2), as primary data
representation to integrate light-weight reference-based compression. At the same time,
we remove the overhead of data conversion for SNV calling, if we can store genome data
directly using the base-centric database schema.
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Fig. 6: Reference-based compression uses the ex-
isting foreign key relationship to compress sample
bases. Di�ering sample bases are marked and stored
in an exception list.

Concept. The base-centric schema stores
the mapping between sample base and ref-
erence bases explicitly via the SB.Refe-
rence_Base_ID column. We can use
the column values as index to the
RB.Base_Value column. Thus, we can
look up the reference base to which a sam-
ple base is mapped and check whether it
is di�erent or not. Instead of storing each
base value of a sample, we only store those
bases in an exception list that are di�er-
ent from their respective reference base.
Furthermore, we use a bitmap to mark the
unequal bases. In case of good mapping
quality, we do not have to store all sample
bases. To make this technique e�cient, we assume that the reference genome fits into main
memory. Thus, we can retrieve sample bases by their row id as follows:

1. Given a row id, check whether the value is di�erent according to the reference by
scanning the bitmap.

2.1 In case of di�erence, use the prefix sum over the bitmap as index to look up the
exception value.

2.2 In case of a match, look up the base in column RB.Base_Value. As look up index
we can use the respective SB.Reference_Base_ID.

Improving storage consumption. Nevertheless, this approach requires to store one bit
for every sample base. Consequently, if we store all sample bases of the data set used in
the previous section, we require ca. 14 billion bits that is ca. 1.75 GB. To further reduce
the data size, we use a compressing word-aligned hybrid (WAH) bitmap instead of a plain
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bitmap [WOS06]. In a WAHBitmap, zeroes and ones are organized in words of a specific
size, e.g. 32 bit. If a word contains only zeroes or ones, it is converted into a fill word
encoding the number of words that contain only zeroes or ones. Thus, long runs of zeroes
or ones can be compressed e�ectively. Assuming a reasonable read mapping quality, our
bitmap contains many zeroes.

Fast data access. The WAHBitmap applies run-length encoding on bitmaps. Consequently,
random access performance is an issue as count values have to be summed up in order to
determine the value of a given row. Thus, we extend the WAHBitmap to store the first row
id that is not within a word similar as suggested by Abadi et al. for run-length compressed
columns [AMF06]. Then, we can use binary search to access random row ids faster.

Since scientists are interested in consecutive genome ranges such as genes or chromosomes,
it is quite common that our SNV calling query processes complete reads that are mapped to
the specific genome region. Therefore, the chances to access consecutive values are high.
Thus, we integrate a mechanism to speed up sequential row accesses by caching the last
accessed index and visited word avoiding binary searches.

4.2 Delta+RLE encoding

On the one hand, the base-centric database schema enables us to integrate genome-specific
compression in a light-weight way. On the other hand, the base-centric database schema
has the drawback to increase the data volume due to explicit encoding of information. In
Table 1, we breakdown the storage requirements for single columns of the base-centric
database schema when storing the complete human genome data set from Section 3. The
breakdown reveals that explicit position information stored in SB.Reference_Base_ID
and RB.Position lead to a massive storage blow up. This information is usually implicitly
stored within strings. Consequently, if we want to use the base-centric database schema as
primary data representation, we have to cope with the additional storage overhead.

Table Column GB %
Sample_Bases SB Reference_Base_ID 111.3 72.8
Reference_Bases RB Position 12.5 8.2
Sample_Bases SB Base_Value 5.2 3.4

Other columns 23.9 15.6

Tab. 1: Storage breakdown of a human genome using a base-centric database schema. Explicit position
information stored in SB.Reference_Base_ID and RB.Position lead to a large storage blow up.

Both problematic columns contain runs of consecutive values that are incremented by one.
This circumstance is inherent to the data as we store the base values of every read consecu-
tively. The SB.Reference_Base_ID values are foreign keys to the Reference_Bases
table. Within a mapped read, it is a common case that consecutive bases are mapped
to consecutive reference bases. As we can guarantee that all reference bases are sorted
according to their RB.Position, SB.Reference_Base_ID values are usually incremented
by one within the same read. Thus, the delta between two values in one run is mostly one.
In the following, we describe an encoding and compression scheme that combines delta
encoding and run-length encoding (RLE) to compress such data: Delta+RLE encoding.
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Concept. In Figure 7, we depict the idea of Delta+RLE compression and apply it to the
base-centric database schema. We encode values of column SB.Reference_Base_ID
using Delta+RLE encoding. Instead of encoding the delta values using run-length encoding,

Read_ID 1 11111... 2 ...222

Base_Value A GTCGT... G ...TAA

Reference_Base_ID 10 1414131211... 8 ...11109

Reference_Base_ID 10 1145... 8 4

Sample Bases SB

Fig. 7: Delta+RLE encoding represents runs of con-
secutive values as run value and length value similar
to RLE encoding. This leads to an implicit string
encoding for DNA sequences.

we generalize the concept of run-length
encoding to support values that have a fix
delta, i.e., one. This way we can compute
single values within a run by adding the
o�set of the value to the actual run value.
For example, the first run in Figure 7 has
10 as run value. If we want to decompress
the third value within this run that has
an index o�set of 2, we sum 2 and 10
which gives us the decompressed value 12.
Delta+RLE encoding can also be applied
to RB.Position.

Fast data access. Delta+RLE has bad random access performance, because count values
have to be summed up, in order to determine the value of a given row. Thus, we switch from
using count values to prefix sums representing row ids [AMF06]. Given a row id, we can
use binary search to determine the containing run. Using a caching mechanism as described
in Section 4.1, subsequent sequential accesses do not require a binary search.

4.3 Base-centric schema as primary data layout

Now that we explained how to integrate genome-specific compression into a column-oriented
database system, we conclude that the base-centric database schema is the more favorable
data representation for genome data stored in a column-oriented database system than the
straightforward sequence-centric schema. First, the base-centric database schema has similar
storage requirements than the sequence-centric database schema for two reasons:

1. Column SB.Base_Value stores the single characters of reads consecutively, thus,
the sequence of characters in memory resembles the original read sequence.

2. Using Delta+RLE encoding, we can store explicit position information highly e�cient.
As bases within reads are mapped to successive positions, we usually have to store
one run value and one count value per read. That is similar to the storage requirements
for keeping a pointer to a string per read in a sequence-centric database.

Second, the base-centric data representation encodes genome data in a database-native way
that allows for direct data processing such as SNV calling (cf. Section 3). Moreover, we can
leverage the base-centric schema to integrate genome-specific compression schemes. In the
following, we call the database approach using the base-centric schema as primary data
layout DBSbase to distinguish it from the straightforward approach that we now call DBSseq .
Note, all optimizations discussed so far can also be applied to DBSseq after genome data
has been converted e�ectively reducing the memory footprint of DBSseq .

Advanced join processing required. The remaining challenge when using DBSbase,
i.e., using the base-centric database schema as primary data layout, is the large size of
table Sample_Bases. For example, if we store the complete genome used in Section 3,
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Fig. 8: Hash and invisible join runtimes on single chromosomes of a human genome using DBSbase
and DBSseq . The invisible join is superior to the hash join and required to overcome the processing
overhead introduced by the base-centric database schema due to large table sizes.

table Sample_Bases contains more than 14 billion rows, even if we just analyze a single
chromosome. In contrast, using DBSseq , we only convert the data required for analysis. For
example, if we analyze chromosome 22, table Sample_Bases contains only 160 million
rows. Considering the join between table Reference_Bases and Sample_Bases during
SNV calling (cf. Figure 3), this di�erence in size becomes critical. Using a hash join, we
hash table Reference_Bases and probe table Sample_Bases. Consequently, DBSbase is
slower than DBSseq , because we always have to probe more rows. In Figure 8, we show the
hash join runtimes calling single chromosomes on a human genome (cf. circled plots).

An alternative join technique is the invisible join proposed by Abadi et al. [AMH08]. The
key idea is to apply predicates on dimension tables directly to the fact table (predicate
rewriting) and to reconstruct join tuples later via positional lookups using foreign keys as
indexes. A hash-based semi join between dimensions and fact table is a general strategy
for predicate rewriting, but still requires to probe billions of rows of table Sample_Bases.
In order to make the predicate rewriting more e�cient, Abadi et al. introduce the so
called between-predicate rewriting. They observed that predicates on dimension tables can
often be rewritten as between-predicate on the respective foreign-key column of the fact
table. In our case, we can rewrite the predicate on table Reference_Bases to filter for
single chromosomes into a between predicate on column SB.Reference_Base_ID in table
Sample_Bases, because reference bases are stored consecutively leading to consecutive
primary keys. This reduces the memory footprint of our database approaches as we do
not have to create intermediate hash tables [Do16]. Moreover, we only have to scan the
foreign key column avoiding the e�ort of hash probing. Usually, the scan also has to touch
every row in table Sample_Bases. In combination with Delta+RLE encoding, we are
able to skip all rows represented by a run if the run disqualifies for the between predicate.
Using the invisible join technique in combination with Delta+RLE encoding leads to large
performance improvements of the join phase in DBSbase and DBSseq (cf. Figure 8).

5 Base pruning

We also analyzed the general functionality of SNV callers. We came up with the conclusion
that only those genome positions show a di�ering genotype than the reference base
if at least one sample base di�ers from the reference base. Thus, if we know that a
genome position has only matching sample bases mapped to it, we can exclude it from
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Fig. 9: Base pruning filters out genome
positions where no mismatching base has
been mapped which reduces the number
of genome positions to process during
SNV calling.

further processing during SNV calling, i.e., applying
a domain-specific filter on the data. We show the idea
in Figure 9. The black boxes indicate which genome
positions have to be processed. The other genome
positions have no mismatching bases (circles with
, symbol) mapped to it. Thus, we can reduce the
processing e�ort during query processing. We only
have to join those sample bases that may lead to a
SNV call. Finally, the join result only contains those
sample-base/reference-base tuples that really need to
be aggregated. A traditional optimizer is not able to
apply this optimization as it has no knowledge about

the semantics of the genotype UDF.

5.1 Approaches

In order to compute which genome positions have no di�ering sample base, we have to know
in advance, which sample bases are mapped to which reference base. Using the base-centric
database schema for storing genome data, we have this knowledge already encoded as
foreign-key relationship between tables Sample_Bases and Reference_Bases.

Straightforward approach. In a straightforward approach, we scan the Sample_Bases
table and compare each sample base with the corresponding reference base. Thus, we
collect all genome positions that have at least one di�ering sample base. In a second step,
we scan the table Sample_Bases again in order to determine all sample bases that are
mapped to a genome position that has at least one di�ering sample base. Consequently, the
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Fig. 10: Overall SNV calling runtime on
a whole human genome using base prun-
ing. with and without reference-based
compression. Reference-based compres-
sion always improves runtime.

straightforward approach requires two table scans
over table Sample_Bases. These can be imple-
mented very e�cient. Nevertheless, during the first
scan, we look up reference bases from the table
Reference_Bases. Within one read, these lookups
are cache-e�cient as a read usually maps to a consec-
utive region within the reference genome. Thus, we
cache further accesses to subsequent reference bases.
Nevertheless, this approach introduces overhead due
to comparisons. Moreover, for every new read, we
make a random lookup into table Reference_Bases
as di�erent reads do not have to map to consecutive
regions leading to cache misses.

Indexed approach. Using reference-based compres-
sion, we can improve the straightforward base prun-
ing computation. The reference-based compressed column SB.Base_Value already encodes
which sample base is di�erent according to the reference base. Thus, we can use it as index
and extract all row ids of all di�ering sample bases from the bitmap of the compressed
SB.Base_Value column. Therefore, we only have to scan the bitmap and return all row
ids that are marked with one. Hence, we avoid to access table Reference_Bases at all.
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Furthermore, we do not have to make the comparison between every sample and reference
base as the result is already encoded in the bitmap. In case of high mapping quality, an
optimized bitmap, e.g., a WAHBitmap, contains many zeroes, which allows for skipping
all rows represented by a zero fill word. In Figure 10, we show the impact of light-weight
reference-based compression on the runtime of DBSseq and DBSbase using base pruning.
Using DBSbase, we can reduce the runtime by 30%. Using DBSseq , the runtime reduction
is roughly 7%, because data conversion takes most of the runtime that cannot be reduced
using base pruning. Moreover, using reference-based compression increases the conversion
runtime in DBSseq . Nevertheless, the overall runtime savings due to base pruning pay o�.

5.2 Applicability to specialized analysis tools

So far, we considered base pruning in the context of our database approaches. We can also
apply it to specialized analysis tools such as �������� [Li09]. Nevertheless, heavy-weight
compression used by state-of-the-art flat file formats limits the e�ectiveness:
Applicability to aggregation phase only. We can apply base pruning only to improve
the aggregation phase of the analysis tool. The reason for this is that �������� operates
on heavy-weight compressed data. To guarantee reasonable performance, also for random
lookups within genomes, samtools requires mapped reads to be sorted by their genome
position before being compressed. This is essentially the grouping attribute of the aggregation.
Hence, �������� can interleave decompression and conversion process and generate a
ready-to-aggregate output, a so called pileup, because consecutive reads belong to the same
genome region. Consequently, before we know which bases belong to which reference base
in order to apply base pruning, data is already ready for aggregation. Compared to DBSseq ,
we have already computed the join result. What remains is to check which pileups contain
no di�ering base and do not have to be aggregated saving analysis runtime.
Reference-based compression cannot be exploited. We cannot exploit reference-based
compressed data as index for improving the base pruning computation. This is a direct
consequence from the first limitation. We perform the base pruning computation after the
data is decompressed. Thus, we already lost the advantage of exploiting reference-based
compression to reduce the computational e�ort.

6 Evaluation

In this section, we evaluate the database-driven approaches DBSseq and DBSbase for SNV
calling with regard to runtime performance and storage consumption. First, we investigate
the storage consumption and compare it with the state-of-the-art flat-file formats CRAM and
BAM. We want to find out whether we can cope with the storage blowup of the base-centric
database schema. Moreover, we want to investigate what data characteristics impact our
compression schemes at most. Then, we examine the SNV calling runtime on three real
world data sets and compare it with the state-of-the-art analysis tool �������� 1.3 [Li09].
We are interested in the overall analysis performance and how data characteristics influence
it. Moreover, we want to find out to what extent the base pruning technique improves
analysis runtime.
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Organism Homo sapiens Hordeum
vulgare

DataSet 1 2 3
# Mapped Bases 13.9B 11.8B 3.9B
# Reference Bases 3.1B 249M 1.9B
? Coverage 4 47 2
? Read Length 100 250 100
Mismatch Rate % 0.3 0.8 1.4

Tab. 2: Genome data sets di�er in their key characteristics, which have impact on storage consumption
and processing performance.

6.1 Experimental setup

As evaluation platform, we use a machine with two Intel Xeon E5-2609 v2 with four cores
@2.5 GHz and 256 GB main memory. On the software side, we use Ubuntu 14.04.3 (64
Bit) as operating system and C�G�DB as database system (cf. Section 3). To compile
C�G�DB, we use gcc 4.8.4 with optimization level -O3. Before starting the experiments,
we pre-load the database into main memory. Similar to our initial experiment in Section 3.2,
we use a manually parallelized and functionally reduced version of �������� that accesses
flat files stored on a ramdisk to make the comparison fair. We report average runtimes of 30
runs. Moreover, for runtime results, we report the 95% confidence intervals.

Data Sets. For our experiments, we use three real world data sets. DataSet 1 and 2 contain
human genome data and DataSet 3 contains barley genome data. We obtained the human
genome data from the 1000 genomes project9, which provides representative real world
data sets [Th15]. DataSet 2 contains only the mapped reads of human chromosome 1. The
plant research institute IPK Gatersleben provided us with barley data.

The data sets di�er in their number of reference bases, coverage, read length and mismatch
rate. In Table 2, we summarize the characteristics. The number of reference bases indicates
the upper bound for genome positions that have to be analyzed. The coverage indicates how
many sample bases are mapped on average to a certain reference genome position. Thus, in
case of SNV calling, higher coverage leads to more sample bases to aggregate per reference
genome position. Coverage and number of reference bases together determine the number
of mapped bases in a data set. The read length has direct impact on storage consumption.
If reads are longer, less read data per sample base must be stored (cf. DataSet 1 and 2).
The mismatch rate indicates how many sample bases within the data set are di�erent from
their corresponding reference base. The barley data has a higher mismatch rate than the
human data sets, which can have impact on the number of reported SNVs and may impact
the e�ectiveness of reference-based compression and base pruning.

6.2 Storage consumption

In the first experiment, we examine the storage consumption of the database approaches
DBSseq and DBSbase and the state-of-the-art flat-file formats BAM and CRAM. We have

9 data is available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/
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Approach Storage consumption in GB (Relative to DBSseq) Main compression
DataSet 1 DataSet 2 DataSet 3 type

DBSseq (baseline) 38.0 (100%) 27.2 (100%) 12.9 (100%) light-weightDBSbase 27.2 (072%) 17.8 (065%) 9.5 (074%)
BAM 14.6 (038%) 6.9 (025%) 3.9 (030%)

heavy-weightCRAM 10.3 (027%) 4.9 (018%) 3.2 (025%)
Zipped DBSbase 11.7 (031%) 6.1 (022%) 3.3 (026%)

Tab. 3: Storage consumption of DBSseq , DBSbase, BAM and CRAM. DBSbase outperforms DBSseq
on all data sets. BAM and CRAM are superior as they apply heavy-weight compression. Zipping
DBSbase leads to a similar storage consumption as CRAM.

two main objectives: 1) We want to investigate whether we can cope with the storage blowup
of the base-centric database schema and 2) We want to find out how data characteristics
impact the compression ratio. We report the absolute storage requirements for storing sample
genome and respective reference genome data in Table 3 including storage required for
indexes to improve data access speed. In brackets, we show the relative storage requirements
compared to DBSseq , which serves as our baseline.

E�ective reference-based compression in column-stores. The results show that DBSbase

always requires less storage than DBSseq independent of the stored data set. Due to
Delta+RLE compression that e�ectively reduces the overhead due to explicit positional
information and reference-based compression, we can decrease the storage size in a database
system by 26 to 35%. Compared to BAM, DBSbase needs 2 to 2.5 times more storage than
BAM, since we do not use heavy-weight compression. Still, reference-based compression
is an essential mean to reduce the storage size of genome data. The CRAM results show
that reference-based compression in combination with heavy-weight compression further
reduces the storage size compared to BAM. Compressing the disk-resident data files of
DBSbase using GZIP leads to a similar result (cf. last row of Table 3).

Data-dependent storage requirements. Table 3 reveals that the storage savings of DBSbase

compared to DBSseq depend on the data set. The reason for the di�erences between the
three data sets is two-fold: read length and mismatch rate. In Table 4, we show the impact
of these characteristics on the three columns SB.Reference_Base_ID, SB.Read_ID and
SB.Base_Value. All other columns’ sizes are independent of data set characteristics.

Impact of read length. We use RLE to compress SB.Read_ID and our Delta+RLE encoding
to compress SB.Reference_Base_ID. Both encodings are sensitive to the length of runs
within the data. The longer the runs, the better the compression ratio. Since we store bases
of the same read consecutively (SB.Read_ID) and these bases usually map to successive
genome positions (SB.Reference_Base_ID), longer reads lead to increased run length.
For that reason, in DataSet 2 with 250 bases per read on average, each column requires 0.6
bit per column per row. The other two data sets require 1.4 bit per column per row, because
reads ahve an average length 100 bases.

Impact of mismatch rate. The di�erent mismatch rates of the data sets directly impact the
storage requirements of the reference-based compressed column SB.Base_Value. Fewer
mismatches lead to fewer values to be stored in the exception list. Moreover, the bitmap
contains more zeroes that can be leveraged by a WAHBitmap. Therefore, DataSet 1 requires
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DataSet 1 2 3
# Mapped Bases 13.9B 11.8B 3.9B
? Read Length 100 250 100
Mismatch Rate % 0.3 0.8 1.4

Bi
ts

pe
rr

ow SB.Reference_Base_ID 1.4 0.6 1.4
SB.Read_ID 1.4 0.6 1.4
SB.Base_Value 0.6 0.8 1.3

Sum of bits 3.4 2.0 4.1

Tab. 4: Influence of data characteristics on storage consumption using DBSbase. The longer the reads,
the smaller is the overhead of foreign key columns SB.Reference_Base_ID and SB.Read_ID.

only 0.6 bits on average per mapped base. The other data sets require more bits per mapped
base in concordance with their mismatch rate. Among the three columns, the overall storage
consumption is dominated by the read length. The overall required number of bits per row
in the three columns corresponds to the observed storage savings of DBSbase comapred to
DBSseq (cf. Table 3).

6.3 SNV calling runtime

In the second experiment, we examine the SNV calling runtime of DBSbase, DBSseq

and �������� 1.3 with and without base pruning. Note, we use the same probabilistic
error-model in our database approaches as ��������. We do not consider post-processing
validations that can be applied to the results of all approaches. We show the runtime results
on the three di�erent data sets from the experiment before in Figure 11. The hatched bars
indicate runtimes with base pruning. First, we consider the runtime of the single approaches
without base pruning and investigate the impact of data characteristics. Then, we examine
the impact of base pruning.

A base-centric database schema pays o�. As expected, DBSbase always outperforms
DBSseq if we do not apply base pruning, because we do not have to convert data on-the-fly.
Although DBSbase has to process all sample bases, in particular during the join phase,
we can reduce the overhead e�ectively using the invisible join technique (cf. Section 4.3).
Moreover, the experiment reveals that DBSbase is competitive in terms of runtime compared
to �������� due to the use of advanced processing techniques. Thus, the required e�ort to
compress base-centric genome data pays o�.

Impact of data characteristics. Considering the results without base pruning, we find that
the runtime depends on the number of genome positions and mapped bases to process.

Number of genome positions. For example, DataSet 1 and DataSet 2 contain roughly the
same amount of mapped bases to process, but DataSet 1 contains data for the complete
genome, i.e. 3.1 billion genome positions. In DataSet 2 all mapped bases only belong to
the 249 million genome positions of chromosome 1. We expected a correlation with the
overall analysis runtime, because computing more genome positions requires managing
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Fig. 11: SNV calling on three di�erent real-world data sets using DBSbase, DBSseq and ��������
with and without base pruning. DBSseq is always slower due to conversion overhead. DBSbase benefits
most from base pruning.

more aggregation groups. Nevertheless, the large runtime di�erences of �������� between
DataSet 1 and 2 are unexpected. The database approaches roughly require 30% less runtime
on DataSet 2 compared to DataSet 1, because less groups have to be initialized and
computed. In contrast, �������� saves 80%. An indepth analysis of �������� revealed
that �������� has large overhead for writing analysis results per genome position via
strings. Thus, analyzing many genome positions (cf. Dataset 1) increases its runtime.

Number of mapped bases. The runtimes on all data sets reveal that the database approaches
are more a�ected by the number of mapped bases to process. Considering DataSet 1, the
runtime of DBSbase and �������� are nearly equal, but for DataSet 2, using DBSbase

increases the runtime by factor 2.5 compared to ��������. The reason for this di�erence
is that the database approaches su�er from sorting or synchronization overhead during
aggregation processing. �������� requires presorted data allowing for filterings by genome
positions and manual parallelization. The presorting also ensures that di�erent threads
operate on distinct genome regions. We can emulate this behavior by using a sort-based
aggragtion processing, which obviously introduces overhead during runtime. Another
strategy is a hash-based aggregation. Certainly, this strategy requires locking mechanisms,
because the work per genome region is distributed between di�erent threads. Consequently,
the database aproaches su�er from high coverage data.

The tradeo� of both data characteristics can be seen when processing DataSet 3. Again
the runtimes of DBSbase and �������� are competitive. DataSet 3 contains less genome
positions favoring ��������, but also less mapped bases to process favoring DBSbase.

Impact of base pruning.

Using base pruning, we aim to restrict the costly processing to those genome positions
that might show a variant (cf. Section 5). Using one of the database approaches, we can
make benefit of this reduction during the join and aggregation phase. Using ��������, we
still have to decompress, convert and inspect all genome positions before taking advantage
of the base pruning technique (cf. Section 5.2). Consequently, the database approaches
benefit most from using base pruning. In Figure 11, we show the runtime results of all three
approaches with base pruning indicated with hatched bars.

DBSbase outperforms �������� on DataSet 1 and 3. Even DBSseq is faster than ��������
on DataSet 1. On DataSet 2, �������� is still faster due to less genome positions to
process even without base pruning. Overall DBSbase benefits most from base pruning,
because we reduce the number of genome positions to process during all processing steps.
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6.4 Discussion

Our evaluation shows that a base-centric data representation outperforms a straightforward
database approach regarding storage consumption. The concrete storage savings depend on
the read length and number of mismatching bases. Nevertheless, heavy-weight compression
impacts storage size more, even on a sequence-centric data representation. Thus, BAM,
which applies only heavy-weight compression, requires less storage than DBSbase. CRAM
that additionally applies reference-based compression can compress data even better. Our
experiments show that a simple compression of database files using GZIP leads to similar
results than CRAM. Thus, integrating heavy-weight compression into our database approach
would be beneficial especially to keep cold data without overhead on secondary storage.

The second advantage of a base-centric data representation for genome data is the improved
analysis performance compared to a straightforward approach. We are able to detect SNVs
as e�ciently as ��������. To achieve this performance, we rely on advanced processing
techniques such as invisible join. In combination with base pruning, we can further improve
analysis runtime. Overall, our proposed techniques and approaches benefit from longer reads
and smaller mismatch rate. Thus, database systems using our techniques will benefit from
improvements in DNA sequencing that will generate longer and more accurate reads [Li12]
leading to less mismatches due to mapping errors.

7 Related work

In the following, we categorize and discuss approaches that use database systems and
technology to e�ciently store, manage and analyze genome data.

Data warehouse approaches. One of the first approaches to manage and integrate genome
data in a database system is AceDB [ST99] using an object database. Several scientists
proposed more advanced data warehouse solutions for managing and analyzing genome
data and related data from other data sources [Le06; Sh05; Tö08]. The main focus of these
solutions is the integration of di�erent heterogeneous data sources to allow for integrated
analyses. These approaches do not consider storage size, analysis e�ciency or incorporate
genome analysis tasks such as SNV calling. Instead they integrate such data. Our proposed
approaches complement these data warehouse solutions by integrating SNV calling into a
DBS. Moreover, we propose compression schemes that enable a data warehouse to store
raw data and compute analysis results on-the-fly.

Integrated data analysis. Besides classical data warehouse solutions, approaches exist that
integrate genome analysis functionality into a data management solution. For example, Ceri et
al. present a data-management approach that allows for storing and querying genome-position
specific data using a simple data model called Genomic Data Model [Ce16]. Furthermore,
they propose the GenoMetric Query Language that provides algebraic operations similar to
SQL and domain-specific analysis functionality. In contrast, our approach aims at using
existing database technology to support genome analysis tasks. bdbms proposed by Eltabakh
et al. also extends an existing database system with biological functionality [EOA07] such as
annotations and provenance tracking. Moreover, it provides pattern matching functionality
for compressed sequence data. Our work complements bdbms by providing genome-specific
compression and analysis functionality.
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Our work is mainly related to the work by Röhm and Blakeley [RB09]. They propose an
approach to integrate genotyping, the pre-computation step of SNV calling, into a database
system. They use a disk-based database system and enable users to operate on the original
flat-files. Nevertheless, they report unsatisfactory analysis performance due to the use of
multiple user-defined functions that are hard to parallelize. Moreover, within their approach
for genotyping, they follow a straightforward flat-file approach introducing additional
conversion overhead (cf. Section 3). Our DBSbase approach avoids this overhead using a
special encoding of genome data requiring only one user-defined function for analysis.

Moreover, several other approaches exist that explicitly use main-memory database systems
to integrate genome analysis tasks. The approach by Fähnrich et al. uses a two-phase map-
reduce approach to convert reads and perform SNV calling [FSP15]. The approach by Cijvat
et al. uses a special user-defined function of MonetDB to convert DNA sequences [Ci15].
As this operation is expensive, they cache the result for further analysis. Thus, our proposed
technique to e�ciently encode converted genome data complement both approaches.

Reference-based analysis techniques. Currently, we are aware of one variant calling
approach called CAGe that leverages the similarity between reference genome and sample
genome to reduce the analysis runtime of variant detection [Bl14]. The approach classifies
genome regions regarding their analysis complexity incorporating information about
similarity. Regions with high similarities have a low complexity and are analyzed using fast
variant calling approaches. On the other hand, regions with many di�erences are complex
and more sophisticated approaches are applied. Our base-pruning approach can improve the
overall analysis runtime as it reduces the runtime to analyze low complexity regions.

Another approach that leverages the similarity between reference and sample genome is
RCSI proposed by Wandelt et al. [Wa13]. This approach aims at similarity search on
referentially compressed genomes. The idea is to first search on the reference sequence
finding matching segments that may contain errors. In a second step, the compressed
sample genomes are searched at the corresponding segments to generate the final result.
Our approach to integrate reference-based compression provides a basis to integrate this
technique into a relational database system. Moreover, we can use the optimized database
processing engine to look up sample genome segments of interest fast.

8 Conclusion

In this paper, we showed that a base-centric data representation is required to integrate
genome-specific compression schemes such as reference-based compression into a database
system. Based on this, we proposed a filtering technique called base pruning leveraging
reference-based compression as index. Using our database-native approach improves the
overall runtime up to a factor of five compared to specialized analysis tools. The concrete
performance gains depend mainly on coverage and mismatch rate of the analyzed data set.

Overall, our techniques enable scientists and researchers to perform SNV calling within
a database on-the-fly, instead of precomputing results. In our experiments, we used a
probabilistic calling approach based on the error-model routine of ��������. By simply
choosing a di�erent aggregation function, we can apply an alternative variant calling
approach if necessary [Ni11]. Especially on small genome regions, an interactive and
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declarative analysis becomes possible. The raw data and analysis results are delivered by a
single database system improving traceability of results. Additionally, we will benefit from
future improvements of database systems due to our database-native application design. The
code used in this paper is available at http://cogadb.dfki.de/download/.
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