
ModGuard: Identifying Integrity & Confidentiality

Violations in Java Modules (Short Summary)

Andreas Dann1, Ben Hermann1, Eric Bodden12

Abstract: This short paper« presents a static analysis for the novel challenge of analyzing Java
modules. Since modules have only been recently introduced with Java 9, we point out the impact of
modules both from the security and the static code analysis perspective. In particular, we introduce a
static analysis that allows developers to assess if a module successfully encapsulates internal data,
along with a formal definition of a module’s entrypoints.

Keywords: Static Code Analysis; Module System; Java 9

1 Overview

With the release of version 9, Java introduced the module system Jigsaw. It enables developers

to explicitly declare which packages and types are exposed and which are internal [Or15].

Although modules can encapsulate internal types, they do not prevent the unintentional

leak of security-sensitive data, e.g., secret keys, giving rise to integrity and confidentiality

violations. Confining data by leveraging the module system requires reasoning about data

flows between modules and which classes, methods, and fields are actually accessible from

outside the module.

To complement Java’s module system with means to identify unintended data leaks, we

present ModGuard» , a novel static analysis to identify escaping instances, fields, or

methods. Further, we clarify if existing applications may benefit from the guarantees

provided by the module system by conducting a case study on Apache Tomcat.

2 What are modules?

Like “traditional” JAR files, modules assemble related packages, native code, and resources.

Additionally, modules further contain a static module descriptor file (module-info.java).

A descriptor file specifies the module’s unique name, the exported packages, and the other

modules it requires.

Up to Java 8, every public class was visible to any other on the classpath. In Java 9, a class

contained in a module (𝑗𝑎𝑣𝑎.𝑑𝑒𝑠𝑘𝑡𝑜𝑝) may only access another module’s (𝑗𝑎𝑣𝑎.𝑥𝑚𝑙) class

if it requires that module, and the module exports the package [Or1»] (cf. Figure 1).

1 Heinz Nixdorf Institute, Paderborn University, Germany <firstname>.<lastname>@uni-paderborn.de
2 Fraunhofer IEM, Germany
«The full-paper is available online [DHB19]
»https://github.com/secure-software-engineering/modguard

cba doi:10.18420/SE2021_04

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 29

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/18.18420/SE2021_04
mailto:<firstname>.<lastname>@uni-paderborn.de
https://github.com/secure-software-engineering/modguard
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_04

java.xmljava.desktop

java.base

exports java.xml

com.sun

exports javax.swing

exports java.lang

jdk.internal

java.datatransfer

exports java.awt

exports

java.awt.datatransfer

Fig. 1ȷ Blueȷ Module Dep.; Dashedȷ Exported Pkg.

But crucially instances of internal types can still

escape their module. Further, the methods and

fields inherited from exported supertypes can

be invoked, e.g., 𝑗𝑎𝑣𝑎.𝑑𝑒𝑠𝑘𝑡𝑜𝑝 may invoke ex-

ported methods on instances escaping 𝑐𝑜𝑚.𝑠𝑢𝑛.

3 How to identify data leaks & escaping instances?

Identifying unintended data flows using static analyses on individual modules is challenging.

The analysis must be conducted on open code much alike call-graph construction for

libraries [Re16]ȷ a module can be linked to any other, and the analysis must foresee all ways

in which those other modules may invoke it.

Parse class Files to
Jimple

1. Initialization 2. Entrypoint 3. Client Analysis

Compute
Entrypoints

Perform
P/Taint Analysis

Build Module
Graph

Identify
Violations

Fig. 2ȷ ModGuard’s Analysis Steps.

To cope with this challenge, we define all poten-

tial interactions with a module in the form of a

so-called entrypoint model using Datalog-based

analysis rules extending Doop [SB11; SKB1»].

The model distinguishes between explicit and

implicitly entrypoints. Explicit entrypoints are methods whose declaring type is exported

and can be invoked directly. Also, they may grant access to the so-called implicit entrypoints.

Implicit entrypoints are methods that inherit, implement, or override methods of exported

supertypes but are declared by an internal type whose instances may escape.

Based on the entrypoint model, we designed the analysis ModGuard (cf. Figure 2). After

computing the entrypoints, ModGuard checks which fields, returned values, and classes

became accessible as a result of invoking of the entrypoints by computing their points-to

set. To identify violations, ModGuard intersects the points-to set with the point-to set of

security-sensitive types and fields. If the intersection is non-empty, ModGuard reports a

violation.

4 Can Modules help to confine data?

To clarify if applications may benefit from the guarantees provides by the module system, we

exemplary studied Apache Tomcat 8.5.21. Since Tomcat not yet uses modules, we migrated

every JAR to a module, following Corwin et al. [Co0«]. Our case study shows that such a

naïve migration fails to mitigate confidentiality and integrity violations, as ModGuard

found violations in 12 out of 26 Tomcat modules.

5 Conclusion

ModGuard may help developers to leverage the module system security-wise by identifying

the exposure of security-sensitive data or objects. The Apache Tomcat example shows that

to confine sensitive data successfully, developers must introduce modules with care.

30 Andreas Dann, Ben Hermann, Eric Bodden

References

[Co0«] Corwin, J.; Bacon, D. F.; Grove, D.; Murthy, C.ȷ MJȷ a rational module system

for Java and its applications. Inȷ OOPSLA ’0« Proceedings of the 18th annual

ACM SIGPLAN conference on Object-oriented programing, systems, languages,

and applications. Vol. «8, ACM, pp. 2»1–25», 200«, isbnȷ 15811«7125, urlȷ

http://doi.acm.org/10.1145/949343.9493.

[DHB19] Dann, A.; Hermann, B.; Bodden, E.ȷ ModGuardȷ Identifying Integrity Confiden-

tiality Violations in Java Modules. IEEE Transactions on Software Engineering/,

pp. 1–1, 2019, urlȷ http://dx.doi.org/10.1109/TSE.2019.2931331.

[Or1»] Oracle Corporationȷ JEP 261ȷ Module System, 201», urlȷ http://openjdk.

java.net/jeps/261.

[Or15] Oracle Corporationȷ JEP 260ȷ Encapsulate Most Internal APIs, 2015, urlȷ

http://openjdk.java.net/jeps/260.

[Re16] Reif, M.; Eichberg, M.; Hermann, B.; Lerch, J.; Mezini, M.ȷ Call Graph

Construction for Java Libraries. Inȷ Proceedings of the 2016 2»th ACM SIGSOFT

International Symposium on Foundations of Software Engineering. FSE 2016,

ACM, Seattle, WA, USA, pp. »7»–»86, 2016, isbnȷ 978-1-»50«-»218-6, urlȷ

http://doi.acm.org/10.1145/2950290.2950312.

[SB11] Smaragdakis, Y.; Bravenboer, M.ȷ Using Datalog for Fast and Easy Program

Analysis. Inȷ Proceedings of the First International Conference on Datalog

Reloaded. Datalog’10, Springer-Verlag, Oxford, UK, pp. 2»5–251, 2011, isbnȷ

978-«-6»2-2»205-2, urlȷ http://dx.doi.org/10.1007/978-3-642-24206-

9_14.

[SKB1»] Smaragdakis, Y.; Kastrinis, G.; Balatsouras, G.ȷ Introspective Analysisȷ Context-

sensitivity, Across the Board. Inȷ Proceedings of the «5th ACM SIGPLAN

Conference on Programming Language Design and Implementation. PLDI ’1»,

ACM, Edinburgh, United Kingdom, pp. »85–»95, 201», isbnȷ 978-1-»50«-

278»-8, urlȷ http://doi.acm.org/10.1145/2594291.2594320.

ModGuard: Identifying Integrity & ConĄdentiality Violations in Java Modules 31

http://doi.acm.org/10.1145/949343.9493
http://dx.doi.org/10.1109/TSE.2019.2931331
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/261
http://openjdk.java.net/jeps/260
http://doi.acm.org/10.1145/2950290.2950312
http://dx.doi.org/10.1007/978-3-642-24206-9_14
http://dx.doi.org/10.1007/978-3-642-24206-9_14
http://doi.acm.org/10.1145/2594291.2594320

