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Introduction
The scattering amplitude is the central quantity for the
prediction of particle scattering reactions, its modu-
lus squared is directly proportional to the cross-section
measured at a collider. To find signals of new particles
or new fundamental interactions, the signal rate but in
particular the background reactions have to be known
to high precision. Run II of the Large Hadron Col-
lider (LHC) puts urgent demands on scattering ampli-
tude computations within Quantum Chromodynamics
(QCD) and the Standard Model (SM).

Scattering amplitudes are traditionally calculated
from Feynman diagrams. The method becomes arduous
at the high-precision frontier, however, i.e. at multi-loop
order. Some SM scattering amplitudes, crucial for LHC
Run II, are presently uncomputable in the Feynman-
diagram approach.

What makes multi-loop Feynman diagrams so dif-
ficult mathematically are the multiple complex vari-
ables and multifold integrals involved. The traditional
one-variable complex analysis is not powerful enough
for the computation of multi-loop Feynman diagrams.
The most convenient mathematical tool for this pur-
pose is Computational Algebraic Geometry (CAG). In
recent years, several computational methods from CAG,
such as Gröbner bases, syzygies, module computation,
or genus evaluation, have been successfully applied to
scattering amplitudes.

This article presents several typical applications of
CAG in scattering amplitudes,

1. Multi-loop integrand reduction. We use Gröbner
basis methods to obtain the minimal integrand au-
tomatically.

2. Multi-loop unitarity. Frequently, multi-loop uni-
tarity generates degenerate multivariate residues,
which cannot be reduced to one-variable residues.
This problem can be solved by the transformation
law and Bezoutian matrix methods.

3. Integration-by-parts (IBP) relations. We apply
syzygy computations of polynomial modules to
restrict the size of IBP relations, and efficiently
reduce Feynman integrals to a minimal set.

Integrand Reduction
The integrals appearing in multi-loop Feynman dia-
grams are of the form∫

dD`1

iπD/2
. . .

dD`L
iπD/2

N(`1, . . . , `L)

D1 · · ·Dk
(1)

where L is the number of loops, `i are the loop mo-
menta, andDi = p2

i −m2
i are the denominators of Feyn-

man propagators, where pi and mi are the momentum
and mass of the particle running on the propagator and
pi is in general a linear combination of loop momenta `i
and external momenta. The numerator N is a polyno-
mial in the components of the `i.

A natural question on these objects is, Is there a way
to reduce the total number of terms before integration?
More specially, we need an algorithm to decompose the
numerator as

N = ∆ +
∑
i

fiDi , (2)

so that all terms in the numerator which cancel denom-
inators are identified, and the integrand is then maxi-
mally reduced. By maximal reduction we mean that the
algorithm shall produce ∆ = 0 if N can be written as
N =

∑
i fiDi.

For a one-loop amplitude, L = 1, the decomposition
can be achieved by the OPP method [1, 2]. For L > 1,
the naive generalization of OPP method does not work,
however, because there are too many variables and max-
imal reduction cannot be achieved in general. Hence
we introduce the CAG method Integrand reduction via
Gröbner basis.

The decomposition (2) has the form of a synthetic
polynomial division over the polynomials, and maxi-
mal reduction in particular is automatically satisfied by
the properties of Gröbner basis. We define the ideal
I = 〈D1, . . . , Dk〉, and calculate its Gröbner basisG(I)
with respect to some monomial order. By dividing the
numeratorN towardsG(I) we obtain the desired ∆ and
quotients fi. In practice, we find it efficient to use GLex
or GRevLex monomial orders. This algorithm [3, 4]
works for an arbitrary number of loops and is realized
in the Mathematica package BASISDET [3].

It is interesting to see the relation between integrand
reduction and unitarity. In the context of a quantum
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field theory, ‘unitarity’ means that a loop amplitude on
the unitarity cut can be written as the product of lower-
order loop and tree amplitudes. The unitarity cut is the
affine algebraic set

V (I) = V ({D1, . . . , Dk}) (3)

of solutions of D1 = . . . = Dk = 0. For a multi-loop
amplitude it is typically very complicated to obtain the
coefficients fi in N from Feynman rules, so we would
like to reconstruct N from unitarity, by merging lower-
order loop and tree amplitudes. The question is, How
much information can be obtained from unitarity? or
more specifically, What is the ansatz for the numerator
from the unitarity cut?

This question can be answered by integrand reduc-
tion via the Gröbner-basis method and Hilbert’s Null-
stellensatz [3]. Let J =

√
I be the radical of I . Hilbert’s

Nullstellensatz states that if a polynomial g vanishes on
the unitarity cut, i.e. vanishes on V (I), then g ∈ J .
Hence the unitarity-reconstructible part is the quotient
ring, R/J . In particular we could prove [5] that in
dimensional regularization scheme I is a radical ideal,
I =
√
I , which means that, if we start from a numerator

N with all possible terms restricted by renormalization
conditions and indetermined coefficients, the division
output ∆ provides the ansatz for unitarity reconstruc-
tion.

Consider a simple example, the two-loop massless
double box (dbox) diagram 1 in 4 dimensions. There
are 7 inverse propagators D1...7,

`21, (`1 − p1)2, (`1 − p1 − p2)2 (4)

`22, (`2 − p4)2, (`2 − p3 − p4)2, (`1 + `2)2.

Figure 1: Two-loop double box diagram.

The ideal I = 〈D1, . . . , D7〉 is a one-dimensional
ideal which is the intersection of 6 prime ideals. On
rather general grounds (renormalizability) a term in the
numerator of the form

(`01)m0(`11)m1(`21)m2(`31)m3(`02)n0(`12)n1(`22)n2(`32)n3

obeys
∑3

i=0mi ≤ 4,
∑3

i=0 ni ≤ 4,
∑3

i=0(mi + ni) ≤
6. A simple counting shows that there are 160 mono-
mials in N , and the division of N towards G(I) gen-
erates a ∆ with 32 monomials. Since parity-odd terms
like εµνρσ`

µ
i p

ν
1p
ρ
2p
σ
3 integrate to zero, we may drop an-

other 16 monomials from the integrand and have hence

reduced the original 160 terms in the numerator to 16
terms at the integrand level.

Several complicated multi-loop amplitudes were
computed by this method. One distinguished achieve-
ment is the complete integrand for the two-loop all-plus-
helicities five-gluon amplitude in QCD [5, 6, 7]. This
integrand cannot be tackled in the traditional Feynman
diagram approach with present compute resources, but
it can be obtained efficiently from recursive integrand
reduction method with Gröbner-basis computation.

Unitarity and Residue computation
Besides the unitarity-based integrand reduction we can
also use unitarity in the residue approach [8, 9, 10]. An
L-loop scattering amplitude can generally be decom-
posed into a basis {Ik} of so-called master integrals
(MI) and a remainder which is free of integrals,

AL-loop
n =

∑
i

ciIi + rational terms. (5)

The maximal unitarity method introduces a further split,

AL-loop
n =

∑
j

cjIj + simpler integrals (6)
+ rational terms

where the sum now extends only over master integrals
with exactly k propagators, where k is the largest num-
ber of propagators in the MI basis. “Simpler integrals”
stands for integrals with fewer than k propagators. The
coefficients cj can be obtained by maximal unitarity as
follows: first replace a generic Feynman integral by a
contour integral [8]∫

dD`1
(2π)D

· · · d
D`L

(2π)D
N(`1, . . . , `L)

Dα1
1 · · ·D

αk
k

→∮
dD`1
(2π)D

· · · d
D`L

(2π)D
N(`1, . . . , `L)

Dα1
1 · · ·D

αk
k

=
∑
j

wj

∮
Cj
ω

where ω is a differential form on V (I), and again I =
〈D1, . . . , Dk〉. The contours Cn are around the poles of
ω and also around nontrivial cycles of V and wn are
weights of these contours.

To extract the coefficients cj in (), we can find a spe-
cial set of weights w{j}n [8] such that

cj =
∑
n

w{j}n

∮
Cn
ω . (7)

This method obtains the coefficients in an elegant way,
since usually it is much simpler to evaluate contour in-
tegrals than the original Feynman integrals. For multi-
loop cases, however, the contour integrals are multivari-
ate, and can be complicated in cases. Also here we can
turn to CAG methods to evaluate the contour integrals.

A multivariate residue is mathematically defined
as follows [22]: consider a residue at (z1, . . . , zn) =
(ξ1, . . . , ξn) ≡ ξ. Let U be the ball ||z − ξ|| < ε and
assume that the functions f1(z), . . . , fn(z) are holomor-
phic in U and have only one isolated common zero ξ in

10



U . Let h(z) be a holomorphic function in a neighbor-
hood of Ū . Then for the differential form

ω =
h(z)dz1 ∧ · · · ∧ dzn
f1(z) · · · fn(z)

(8)

the residue at ξ is defined to be

Res {f1,...,fn},ξ(ω) =

(
1

2πi

)n ∮
Γ
ω . (9)

The contour is defined by the real n-cycle, Γ = {z :
|fi(z)| = εi}, with orientation specified by d(arg f1) ∧
· · · ∧ d(arg fn). If the Jacobian of {f1, . . . , fn} at ξ
is nonzero, we call the residue non-degenerate. In this
case, the value of residue is simply

Res {f1,...,fn},ξ(ω) =
h(ξ)

J(ξ)
. (10)

by Cauchy’s theorem. For multi-loop amplitudes, the
residues can be degenerate, however, so Cauchy’s theo-
rem does not apply.

There are many different algorithms of calculating
multivariate residues in algebraic geometry. We mainly
apply two methods,

1. Transformation law. The original denominators
can be transformed to a new set of denominators,
namely, hi =

∑
j aijfj , where aij are locally

holomorphic functions. Then the transformation
law states that

Res {f1,...,fn},ξ(ω) = Res {g1,...,gn},ξ(detAω)
(11)

where A is the matrix (aij). In particular, if
f1, . . . , fn are polynomials, we can calculate the
Gröbner basis for I = 〈f1, . . . fn〉 in Lex or elim-
ination orders to obtain a set of polynomials hi
where each hi is univariate, hi(z) = hi(zi). The
r.h.s. of (11) then becomes a product of univariate
residues.

2. Bezoutian matrix. The multivariate residue has
local and global dualities. Define symmetric
forms

〈N1, N2〉ξ ≡ Res {f1,...,fn},ξ

(
N1N2

f1 · · · fn

)
, (12)

〈N1, N2〉 ≡
∑

ξ∈V (I)

〈N1, N2〉ξ . (13)

Eq. (13) is non-degenerate in C[z1, . . . , zn]/I , so
we can find a C-basis {e1, . . . ed} by Gröbner-
basis computation. Then by duality theorems,
there is a dual basis {∆1, . . . ,∆n} such that

〈ei,∆j〉 = δij (14)

Explicitly, the dual basis can be found as follows:
first, calculate the Bezoutian matrix B = (bij),

bij =
fi(y1, . . . , yj−1, zj , . . . , zn)

zj − yj

− fi(y1, . . . , yj , zj+1, . . . , zn)

zj − yj
. (15)

Then we divide the determinant detB over the
double copy of the Gröbner basis G(I). The re-
mainder can be expanded as

d∑
i=1

∆i(y)ei(z), (16)

hence both the basis and dual basis are obtained.
The sum of residues can be easily found by stan-
dard linear algebra analysis of the non-degenerate
inner product.

Finally, for each individual residue ξ we can find
a polynomial sξ with properties∑
ξ∈V (I)

sξ = 1, s2
ξ = sξ, sξisξj = 0 (i 6= j)

(17)

by means of which the individual residue is ex-
tracted from the sum of all residues,

Res {f1,...,fn},ξi(ω) =
∑

ξ∈V (I)

Res {f1,...,fn},ξ(sξω).

(18)
This method is highly efficient for calculating the
sum of residues. For an individual residue, it is
also often faster than the first method since one
does not need to compute a Gröbner basis in Lex
or Elimination order.

For example, using the first method, we calculated all 64
residues from the maximal unitarity cut of a three-loop
triple box diagram [11]. All residues are bivariate and 6
of them are degenerate. We also used both methods to
get the two-loop unitarity cuts with doubled propagators
[12, 13]. In these cases, all residues are degenerate.

The residue computation methods also apply to the
computation of scattering equations [19]. In particular,
the scattering equation requires the sum of residues only,
so we can apply the highly efficient method 2 to get the
amplitude directly.

IBP reduction and Syzygy computation

Integration-by-parts (IBP) identities [14, 15] arise from
the vanishing integration of total derivatives. Schemati-
cally, the relations take the form

∫ L∏
i=1

dD`i

πD/2

L∑
j=1

∂

∂`µj

vµj P

Da1
1 · · ·D

ak
t

= 0 , (19)

where P and the vectors vµj are polynomials in the inter-
nal and external momenta, the Dk denote inverse propa-
gators, and ai ≥ 1 are integers. IBP relations reduce the
set of all integrals to master integrals.
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In the computation of multi-loop scattering ampli-
tudes, IBP reduction is a necessary but difficult step.
The difficulty comes from the large number of choices
for vµi : there are too many IBP relations and too many
integrals involved. After obtaining IBP relations, we
need to use a linear reduction to find an independent set
of IBPs. This process usually takes a lot of computer
time and memory. The current standard IBP-generating
algorithm is the one of Laporta [16], of which several
public implementations exist.

One way to improve the IBP-generating efficiency
is pick up suitable vµi such that (19) contains no dou-
bled propagator [17]. Overall, this choice is equivalent
to finding polynomial tangent fields of a given affine hy-
persurface, or Kähler differentials.

We briefly review the polynomial tangent field. Let
F (z) be a polynomial from R = C[z1, . . . , zn]. The set
of polynomial tangent fields is the submoduleMf inRn
such that, for each (a1, . . . , an) ∈M ,

n∑
i=1

ai
∂F

∂zi
= b(z)F (z) (20)

for some polynomial b(z). This definition is dual to the
Kähler differential. If the surface F (z) = 0 is nonsingu-
lar, the tangent field is in general simple. For example,
let F be y2 − x3 − 1, then F (z) = 0 is a smooth curve
and the singular ideal is 〈1〉. From the analysis of the
singular ideal we easily find that the polynomial tangent
fields are generated by

(−Fy, Fx), (F, 0), (0, F ). (21)

On the other hand, if F = 0 is singular, then it
is more difficult to find the polynomial tangent vector
fields. For example, let F = y2−x3. There is a singular
point at (0, 0). From the weighted Euler’s homogeneous
theorem, the polynomial tangent fields are generated by

(−Fy, Fx), (F, 0), (0, F ), (1
3x,

1
2y), (22)

where the last generator is from the weights of variables
around the singular point. In general cases, when there
is more than one singular point, it is not easy to derive
polynomial tangent fields. We can then treat (20) as a
syzygy equation for ai and b and solve it by CAG meth-
ods.

Back to the IBP problem, it is convenient to convert
the integrand to Baikov form. For example, for a two-
loop integral with n ≥ 5 external legs,

I
(2)
n≥5 =

2D−6

π5Γ(D − 5)J

∫ 11∏
i=1

dzi F (z)
D−7
2

P (z)

z1 · · · zk
,

(23)
while for a two-loop amplitude with n ≤ 4 legs,

I
(2)
4 =

2D−5

π4Γ(D − 4)J

∫ 9∏
i=1

dzi F (z)
D−6
2

P (z)

z1 · · · zk
.

(24)

The advantage of this form is that the propagators Di

have all become linear monomials zi. The trick is now
to apply unitarity, D−1

i → δ(Di). We consider a c-
fold cut (0 ≤ c ≤ k) and let Scut, Suncut and SIBP

denote the sets of indices labelling cut propagators, un-
cut propagators, and IBPs, respectively. Scut thus con-
tains c elements. Moreover, we let m denote the total
number of z variables, and set Suncut = {r1, . . . , rk−c}
and SIBP = {rk−c+1, . . . , rm−c}. Then, by cutting the
propagators, z−1

i → δ(zi), i ∈ Scut, the integrals (23)
and (24) reduce to

I
(2)
cut =

∫
dzr1 · · · dzrm−cP (z)

zr1 · · · zrk−c

F (z)
D−h

2

∣∣∣∣
zi=0 ,∀i∈Scut
, (25)

where h is a constant which depends on the number of
external legs: h = 6 for n = 4 and h = 7 for n ≥ 5.

We make the following IBP ansatz:

0 =

∫
d

(m−c∑
i=1

(−1)i+1ariF (z)
D−h

2

zr1 · · · zrk−c

(26)

dzr1 ∧ · · · d̂zri · · · ∧ dzrm−c

)
.

By requiring that the resulting IBP have no dimensional
shift or doubled poles, we obtain the syzygy equations

bF +
m−c∑
i=1

ari
∂F

∂zri
= 0 , (27)

ari + brizri = 0 , i = 1, . . . , k − c , (28)

where ari , b and bri must be polynomials in zj . Note
that the last (k − c) equations in (28) are trivial since
they are solved by ari = −brizri . We therefore only
have one syzygy equation to solve,

bF −
k−c∑
i=1

brizri
∂F

∂zri
+

m−c∑
j=k−c+1

arj
∂F

∂zrj
= 0 (29)

for m − c + 1 polynomials bri , ari and b. The geomet-
ric meaning of this equation is this: we are looking for
polynomial tangent vectors for the reducible hypersur-
face defined by

F (z) ·
k−c∏
i=1

zi = 0 (30)

We solve Eq. (29) by the CAG software Macaulay2 [20]
or Singular [21].

After the IBPs from different cuts are obtained, we
can reconstruct the complete IBP relations. We realize
this algorithm [18] in a Mathematica package with the
communication with Singular [21]. It analytically re-
duces all double box integrals with numerator rank ≤ 4
to the eight master integrals in about 39 seconds in the
fully massless case, and to the 19 master integrals in
about 211 seconds in the one-massive-particle case (on
a laptop with 2.5 GHz Intel Core i7 and 16 GB RAM).

A more advanced method [23] is to consider (27)
and (28) separately. Eqs. (28) can be solved by hand,
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since these are trivial equations. Its solutions ai form a
free module M2. Eqs. (27) define the polynomial tan-
gent vector of an irreducible hypersurface. Its solutions
ai form a moduleM1, which can by found easily by Sin-
gular. Then the simultaneous solution for (27) and (28)
is

M = M1 ∩M2 (31)

which can found by the standard algorithm of intersect-
ing 2 modules. This advanced method, in general, is
much more efficient than the previous way.

Conclusion
In this article, we have introduced applications of com-
putational algebraic geometry in the study of high-
energy physics, especially at the precision frontier of
particle collider. With LHC Run II, the demand for
scattering-amplitude results require new methods and
mathematical tools. As the mathematical field dealing
with large numbers of complex variables, algebraic ge-
ometry is the natural choice for the computation of scat-
tering amplitudes.

One issue that often appears in applied CAG is
that important algorithms (e.g. Gröbner-basis or syzygy
computation) are highly sensitive to the number of sym-
bolic variables appearing in the problem. Consequently
these algorithms perform far better with exact numbers
(e.g. integers/rationals) as coefficients than with sym-
bolic coefficients. Since we frequently need symbolic
results in high-energy physics, we are looking forward
to CAG algorithms optimized for symbolic coefficients.
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