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Abstract: Model-driven software development employs models to describe different
aspects of a system on different levels of abstraction. These aspects are driven by tech-
nology or application domain. Modeling is often done in specific graphical or textual
notations, called domain-specific languages (DSL). In recent years such languages be-
came very popular in the modeling community to describe structure and sometimes be-
havior. In the context of type systems, these structures are called types and the behavior
is modeled with expressions. The programming language community has developed
many concepts to model and specify type systems and the semantics of expressions.
However, in the modeling community this is often neglected when specifying meta
models and describing their semantics, what may cause problems in developing checks
and generators for DSLs. To address this issue, we present an approach, that provides
guidance and support during DSL development based on established knowledge on
type systems and generator construction, to ease the integration of type systems in
DSL. We evaluate this approach with the Xtext language engineering framework.

1 Introduction

Model-driven Software Development (MDSD) uses models to describe different aspects of
a system on different levels of abstraction. Some of these aspects are driven by technology,
others are desired to obtain mental links to application domains. To compose those mod-
els, domain-specific notations are used. These notations can be textual languages, which
are also used to serialize and persist models, and graphical notations. Both are largely
summarized under the term domain-specific languages (DSL).

DSLs had much an impact on software development in recent years, as models became
more important and, mainly, because the tools and frameworks to develop these languages
improved significantly. From DSL developers’ points of view, a DSL is just a language
which allows us to formulate models. The developers focus on the meta model as a set of
classes and references, but do seldom apply methods and concepts common in program-
ming language design. However, the developers do employ type systems in their language,
even though they are not aware or not caring about that. Often, doing so is even then not
considered to be worth the effort when running into serious problems while realizing ref-
erence resolution, semantic checks, and transformations.

Xbase [EEK+12] addresses such type system issues, by incorporating the Java type sys-
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tem into DSLs and provide partial grammars to use Java types and expressions based on
Java types. This limits the DSL to be merely a front end for framework and library APIs,
but allows fast development of DSLs including expressions. DSLs, which use other type
systems or combine multiple type systems, and DSLs not translated into Java are not sup-
ported by Xbase.

Driven by own experience in recent projects [GHH+12, Jun12] and the limitations found
in Xbase, we developed an approach to guide development of type systems for DSLs. In
this paper, we present this approach and show how it can be implemented with the Xtext
DSL framework and tooling [AF11].

Our approach alleviates language maintenance by proposing a partitioning of aspects, ar-
tifacts and activities. This partitioning allows to integrate DSL development in agile envi-
ronments, where feature requests and change of requirements occur very often to suit the
usual growing needs.

The remainder of this paper is structured as follows. Section 3 discusses the similari-
ties and differences between meta models and type systems. Section 4 introduces and
motivates characteristics of DSL. In Section 5 code generation strategies for DSLs are ex-
plained. Section 6 introduces our TS4DSL approach, whose evaluation in two case studies
is documented in Section 7. Section 2 discusses related work. And finally, Section 8
summarizes the paper and provides an outlook on our next targets.

2 Related Work

Xbase [EEK+12] is a framework for Xtext [AF11] to leverage the integration of the ex-
pressions and the Java type system. It provides, a Java type system meta model and a cor-
responding expression meta model, following the same distinction in models, as TS4DSL.
To ease grammar construction, it provides a comprehensive expression grammar, which
can be embedded and customized in Xtext DSLs. However, possible types of an Xbase-
based DSL must comply with the Java type system. Thus Xbase addresses developers
who use DSLs as front ends for Java APIs and helps them to integrate their DSLs in Java
projects. TS4DSL generalizes the Xbase approach and proposes a way on how to develop
DSLs with custom or domain-specific type systems.

XTS Völter proposes a powerful framework for realizing type checks. The framework
provides a declarative API for contributing necessary information on the DSL’s meta
model classes and the intended type system semantics. XTS [Vö11] supports primitive
types, like boolean, int, float), enumeration types, arrays, and sub-typing relations.

Xsemantics is a DSL to describe the semantics, especially the type system, of Xtext-
based languages. The DSL targets developers who want to address typing issues from a
formal perspective based on type theory. Xsemantics1 allows to define judgments and de-

1Xsemantics project: http://xsemantics.sourceforge.net/
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duction rules close to notations common in type systems community (compare [CDJ+97]).

Xsemantics and XTS address both the declaration of type systems for Xtext-based lan-
guages [BSVC12]. For simple common typing cases, XTS provides a more compact no-
tation then Xsemantics. However, functionality not handled by the XTS API must be im-
plemented in Java or Xtend, losing the advantage of a declarative specification language.
Xsemantics is more flexible and allows to formulate arbitrary type systems. In addition to
typing, Xsemantics generates validation checks for Xtext with, so called, check rules.

Both type system approaches can be used with our method of designing a well-typed DSL.
Since we focus on the development process and building blocks of a well typed DSL, we
do not advocate for a particular type system implementation. In this paper we use Xtend to
describe simple typing rules. However, for more complex type systems and better re-use,
formal notations should be considered.

3 Meta Models and Type Systems

Meta modeling languages, such as MOF [Obj06] or UML, already discuss typing. How-
ever, in many other modeling approaches the type system aspect of meta models is not in
the focus of developers.

Meta models are used to describe the structure of software, data and persistence, and in
some cases, behavior. They consist of classes with properties, either carrying attributes of
base types (also called primitive types) or references to other classes. References are used
to express containment and/or to relate to other data objects.

There are a couple of meta modeling frameworks, i.e. tools to create meta models and their
implementation in code. The most common is the Eclipse Modeling Framework (EMF)
[SBPM09], providing the Ecore meta modeling language, which is an EMOF [Obj06]
implementation for Java and the basis for many meta modeling tools. Upon the EMF
core many tools have been built, e.g., model-to-model transformation languages like QVT
[OMG05], ATL [BDJ+03] and Xtend [AG11], DSL and meta model generators like Xtext
[AF11] and EMFtext [HJK+09], storage systems like CDO [Ste12], and many more.

In addition to EMF there are, e.g., the ATLAS Model Management Architecture (AMMA)
project group [JBC+06], which is realized on the Eclipse platform, too, and the tools GME
[LMB+01] and VMTS [MLC06], which are built on Windows.

Type systems have been used to formalize and reason about the structure and semantics
of types. They are used to check the soundness [Pie02, p. 95ff] of type declaration and
expressions (also called terms).

The basis of all type systems is a set of base types [Pie02, p. 117], such as string, integer,
float or void. While these types may share portions of their value sets, for the type system
they are mutually distinct. In addition to these base types, enumerations and references are
also common to many programming languages. Build upon these basic typing elements,
complex types, such as record, list, array, and class, can be composed [Pie02, p. 129ff].
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Besides these structural elements, type systems come with semantic specifications for lan-
guages. There exist different formalisms to specify semantics. We selected an operational
semantics notation (compare [CDJ+97, Pie02]) as a basis for our semantic specifications.
Although they have some weaknesses, e.g., cannot address temporal issues, they are easy
to understand by non-practiced developers.

Type systems and meta models, both formalize structure of data and provide mechanisms
to describe restrictions on the structure. However, their perspectives are quite different.
MOF-based meta models by itself do not provide much restriction mechanisms beside
limiting the number of values in an array or limit the type of references. To apply fur-
ther restrictions, they require a constraint language, such as OCL [OMG06]. OCL is a
very powerful functional language, which provides a rich set of functionality, but it is not
specifically designed to compute typing constraints.

Type system notations formulate the semantics in form of axioms and rules comprising a
set of premises and a conclusion. These rules are closely related to the abstract syntax of a
language. They can clearly be separated into rules to ensure type safety for structures and
those used to provide the same for expressions. In meta models, it is often hard to separate
data structures and behavior, as both are modeled with classes and properties, referencing
each other.

4 Domain-specific Languages

Domain-specific languages (DSL) are languages tailored to a specific technical or applica-
tion domain. Their main goal is to express knowledge (structure and behavior) of a domain
in a textual or graphical notation suitable for the domain with less code or at least better
comprehensible code than in general purpose languages [MHS05].

DSLs can be distinguished in two main groups. DSLs realized in a host language, which
are often implemented as a library providing a coherent set of functions for a domain, are
called internal DSLs, while DSLs with an own grammar or other means of notation, are
considered external DSLs. DSLs can be embedded in other languages, MPS [VP12] for
example focuses on that type of DSL, or are fully self contained languages, like Xtend
[AG11].

Beside the specification of structure and behavior, DSLs are largely used to build exe-
cutable software. This can be realized by interpretation or by transforming DSL code into
an executable language code.

In our approach, we focus on human-readable textual, external, self contained DSLs,
which are used to generate code for an executable target language. Such textual languages
profit from the fact that common version control systems are able to handle differences
and merges much better for text than for graphical or other representations. In addition,
development environments and generative tools, like Xtext [AF11], provide assistance for
automated editor generation and specialized APIs for syntactical and semantic checks,
code highlighting and content assists, which allows us to develop the tooling for a DSL
quickly and help DSL-users to formulate their specifications.
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Figure 1: Different generator stack concepts

5 Code Generation Strategies

Generators and compilers scan and parse source code and build an abstract syntax tree
(AST) representing the code which is stored in a memory data structure. The AST is then
transformed by resolving references (in Xtext this is called linking). The resulting abstract
syntax graph may adhere to a meta model for the corresponding language. Or the AST
is automatically transformed and stored in the source model. Xtext, the technology we
use in this paper, employs an approach where the parse tree is directly transformed into
a source model without references resolved, conforming to a AST and in a second step,
the references are resolved. Since the concrete steps for obtaining the source model are
not in the scope of this work, Figure 1 starts with this source model and omits all previous
compiler phases.

The relation between a DSL’s meta model (source meta model) and the structure of the
generated output can be manifold. Generic code synthesis concepts can be described by
four distinct levels (see Figure 1, leftmost column). First, the source meta model, used
as storage for artifacts described in a DSL. Second, an intermediate meta model, which
resembles a common basis for all target meta models and provides the same type of struc-
tural elements to compose types as the target meta models. Third, the target meta models,
which are used to represent the generated model in memory. And fourth, the serialization
component, which stores target models in files, databases or other means of persistence.
Between the three meta models, transformations are used to project the higher level model
onto the lower level model.

This expansive structure, well-known in classic compiler construction [ASU88, p. 18], is
not always needed. For instance, concepts employing only one target meta model could
omit the intermediate meta model. In contexts allowing straight-forward mapping of the
source meta model structure to single target code fragments, the target code could be
directly generated by a model-to-text transformation. Figure 1 shows four typical DSL-
generator model-stacks.
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To guide the selection of the different stacks, we established a set of criteria. First, if
the target language is a human-readable textual language such as C or Java, not XML or
XMI, then the last step can be done by a model-to-text (M2T) transformation. For XML
serialization, a meta model for the XML schema definition (XSD) should be generated
and used as target meta model. The serialization itself is then done by the XML serializer
provided by EMF. For XMI output, the model is serialized with the XMI writer provided
by EMF.

Projects using M2T transformations to generate XML encountered serious problems, as
M2T transformations write out code in a sequence. While XML supports ids and refer-
ences to ids (IDREF), references could appear before the id is computed. This requires
to implement complex id lookup tables and two pass mechanisms to solve the issue. Us-
ing in memory XML models solves the same issue in a more elegant way, as these models
could be constructed by model-to-model transformations and then be serialized with XML
serializer.

In case the source meta model uses the type system of target meta model, as Xbase
[EEK+12] based languages do by employing the Java type system, the source meta model
can directly be rendered into a text document.

In case of target meta models, that provide typing structures different from the source meta
model, like languages for programmable logic controllers (PLC) [IEC03], or when refer-
encing multiple source meta models, as used in the measure definition language (MDL)
of the MAMBA-project [FvHJ+11], more complex composition operations are required.
Also, a DSL using sub-typing and dynamic memory allocation with garbage collection, or
a target language that supporting just records, then a distinct target meta model is helpful
to manage the complexity of the target code generation. This approach is also useful when
serializing to XMI or XML, as these serializations make use of cross-references that are
hard to keep track of when a source model is directly transformed to text.

6 TS4DSL Approach

TS4DSL is designed to support average DSL developers who use the Xtext framework
and tooling to create their languages. These developers often work in an agile environ-
ment, provoking changes to meta model and language features in short time. Changes in
the meta model and grammar often require changes in typing and validation rules. Such
changes to a Java or Xtend-based type and validation system can be complex and time
consuming. Furthermore, they cannot be checked for correctness, like formal notations
based deduction and reduction rules used to describe operational semantics.

Technologies like, XTS [Vö11] and even more Xsemantics [BSVC12], address the type
checking and validation aspects of type system development. While TS4DSL addresses
primarily grammar rule design, meta model construction, and generator composition. The
approach can be divided in six separate parts. Meta model composition for type systems,
integration of base types into the scoping of the DSL, set of Xtext-grammar patterns, type
checking, target language integration, and model transformations.
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Figure 2: Taxonomy of Types in a Type System

6.1 Meta Modeling

The meta model of a well-typed DSL can be divided into an expression and type part. For
most meta models, it is not necessary to place them into different files or packages, but
it is helpful to make this distinction while designing the meta model and the grammar.
The awareness of these two aspects in language and meta model design helps later to
understand language modifications and the transformation development.

In our approach, we use a class Type to model all types. Based on that, a taxonomy
of sub-classes for the different type structures can be build. The taxonomy shown in
Figure 2, is our general pattern for the composition of type systems. However, in concrete
DSLs certain aspects can be solved differently. For example, the distinction of named and
unnamed types, can be either modeled by sub-typing or with multiple inheritance.

In order to represent the base types, the class BaseType is used. All types constructible by
modelers are subsumed as UserTypes. This distinction will be helpful later on, e.g. while
realizing the type resolution and the identifier (cross reference) resolution.

Our approach uses a ’name’ field for all NamedTypes including the base types. Alterna-
tively each base type could be represented by a separate type class (compare [Vö11]). The
advantage of the former method is, type resolution can handle base types like any other
user defined type. In addition grammar rules for type references can use one unique rule
to describe all kinds of references to named types.

The type reference, in our approach, is modeled with the class TypeReference. It is em-
ployed each time a NamedType is referenced, e.g. in declarations of properties, functions
and in the composition of UnnamedTypes. UnnamedTypes are types that cannot be identi-
fied by a name, instead they are created in place. In many languages arrays are unnamed
types, they are composed of a type reference and size constraints, one for each dimension,
or at least the number of dimensions.
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6.2 Base Type Integration

Base types are the fundamental elements of a type system. The must be available in a
language without definition by the language user. Otherwise, types acting as base types
cannot be mapped straight-forward to corresponding typing constructs in the target model.
We suggest to represent base types by one dedicated class BaseType in the meta model
extending the general NamedType class.

To introduce the concrete base types into the language the base type literals should not be
hard-wired in the concrete syntax. While this can be done by exploiting Xtext features,
it results in mixing different aspects of the language design in one artifact. Instead, we
suggest to define base types in a library that is visible by default. In the EMF and Xtext
environment, this is best done by providing a dedicated resource containing the necessary
instances of BaseType, one for each concrete base type. This resource should not be
persisted as a file or another user accessible resource, as it is an integral part of source
model semantics. Therefore, we constructed a virtual resource that is implicitly made
accessible to the language tooling2. Our approach is similar to the type integration for
Java types provided by the Xbase framework. However, it is simpler, as we only have to
support base types.

The collection of concrete base types can be determined by means of an enumeration,
as we have done in our use cases, or in a String array (see Listing 1). The enumeration
approach benefits from the natural mutual disjointness of the literals, while a string ar-
ray would allow to add the same name twice. Therefore, we recommend an enumerated
solution, even though it is a bit more complex than a simple string array.

public enum BaseTypes {
BOOLEAN, INT, FLOAT, STRING; /∗∗ base types ∗/

public String lowerCaseName() {
return this.name().toLowerCase();

}
}

Listing 1: Base Types of the Use Case Language for App Development

The class structure of the base type integration, which has been adopted in part from
Xbase’ type integration, is shown in Figure 3. The key components of the infrastructure
are the previously described BaseTypes enumeration, the TypeResource that is invisibly
instantiated while loading a model, the TypeProvider that instantiates the resource and acts
as a facade of that resource. The TypeGlobalScopeProvider, employed for determining sets
of candidates for resolving cross-references, returns so-called scopes that are based on the
BaseTypeScope, which contributes the known instances of BaseType. These classes are in
charge of making the base types visible in concrete Xtext-based language toolings (specific
EMF-based resource factories, textual editors).

2An example application can be found in the following git repository: http://build.se.informatik.

uni-kiel.de/de.cau.cs.se.lad.git
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Figure 3: Type System Overview

6.3 Grammar Pattern

Typical rules to construct named and unnamed user types are presented in Listing 2. The
first two rules represent the effective taxonomy of the different types. The left most word,
is the rule name followed by the corresponding meta model class. If the meta model is
automatically generated out of the grammar, the returns followed by the meta model class
can be omitted. However, for type systems with many different kinds of types, this could
lead to meta models hard to comprehend.

Type returns type::Type: BaseType | UserType | ArrayType ;
UserType returns type::UserType: ClassType | RecordType ;

TypeReference returns type::TypeReference:
{type::ArrayType} reference = [types::NamedType| ID] ( ’[’ sizes += INT ’]’ )+ |
{type::TypeReference} reference = [types::NamedType| ID] (’.’ remainder=TypeReference )? ;

MapType: {type::MapType} ’map’ ’<’ key = TypeReference ’,’ value = TypeReference ’>’ ;

Listing 2: Xtext grammar rules for type representation

After specifying the meta model type, the rule body is defined. The Xtext grammar follows
here loosely the EBNF with some extensions. First, names followed by a = are properties
of the meta model class associated with the rule. Second, expressions in square brackets
are used to express references. For example, in TypeReference the expected token is an
ID which is limited to names of type::NamedType of the meta model. Third, meta model
classes in curly brackets are used to ensure the creation of an instance of the given type.

PropertyDeclaration returns type::PropertyDeclaration:
modifiers += Modifier type = TypeReference name = ID ;

FunctionDeclaration returns type::FunctionDeclaration:
modifiers += Modifier type = TypeReference name = ID
’(’ (parameters += ParameterDeclaration (’,’ parameters += ParameterDeclaration)∗)? ’)’
body = Body ;

Listing 3: Xtext grammar rules for properties and functions
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/∗∗ axiom case 1: determines the type of ’true’ and ’false’, similar for IntValue, Enumeration, etc. ∗/
def dispatch Type getActualType(BooleanValue value) {

return typeProvider.findTypeByName("boolean");
}
/∗∗ recursive case 1/axiom case 2: determines the referenced type of a TypeReference by determining the type
∗ of the last component of the (potentially compound) declared type, e.g. A.B[5] ∗/

def dispatch Type getActualType(TypeReference ref) {
return ref.remainder?.actualType?:ref.reference;

}
/∗∗ recursive case 2: determines the type of a value, e.g. ’boolean x = 5;’, by determining the declared type ∗/
def dispatch Type getActualType(ValueDeclaration decl) {

return decl?.typeReference?.actualType;
}
/∗∗ recursive case 3: determines the type of an identifier by determining the type of the identified element,
∗ e.g. of the declared value ’x’ ∗/

def dispatch Type getActualType(ValueReference ref) {
return ref?.reference?.actualType;

}
/∗∗ recursive case 4: determines the type of a declared function by determining its referenced return type ∗/
def dispatch Type getActualType(FunctionDeclaration decl) {

return decl.type.actualType;
}
/∗∗ recursive case 5: determines the type of a function result by determining the called function’s return type ∗/
def dispatch Type getActualType(FunctionCall call) {

return call.functionRef.actualType;
}
/∗∗ recursive case 6: determines the type of an assignment by determining the modified value’s type ∗/
def dispatch Type getActualType(Assignment assignment) {

return assignment.target.actualType;
}

Listing 4: Type resolution realization by means of Xtend’s dispatch extensions (excerpt)

Listing 3 shows general patterns for property declarations as well as the definition of func-
tions, methods, procedures or any other parametrized structure. In many languages, those
elements can have modifiers such as public or static. The subsequently required part
TypeReference specifies the return type of definition, the name attribute its identifier. The
non-shown rule ParameterDeclaration is similar to that of PropertyDeclaration, it merely
employs different modifiers. Furthermore, properties are often initialized in its declara-
tion. To enable that the rule PropertyDeclaration must be extended by an optional call of
the rules Expression or Literal whose result is assigned to a field called expression or value.

6.4 Implementing Type Resolution

Occurrences of types in declarations are represented by a TypeReference maintaining a
non-containment reference to the actual type. Applying this delegation pattern is rea-
sonable, as the reference resolution is limited to instances of TypeReference instead of
providing one for each of the available kinds of declaration. In our Xtext-based setting
this resolution is realized in terms of a scope provider that is supported by the former
mentioned TypeGlobalScopeProvider. The implementation follows the usual Xtext scope
provider declaration scheme [AF11].

In order to establish type checking of expressions of a DSL, like type compatibility of
left and right hand side of assignments or operands of binary operations, we employed
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the Xtend language. Its features like null-safe feature call and method dispatch proved
very comfortable and allow the compact implementation outlined in Listing 4. Note that
ValueDeclaration is a super type of PropertyDeclaration.

Xtend allows a very compact formulation, e.g. null checks are expressed by the question
marks. Second, Xtend allows suffix notation in case the first parameter of the method, here
called extension, is type compatible. Using this feature, method name prefixes like ’get’
can be skipped, see calls of actualType alias getActualType. Third, the keyword dispatch
instructs Xtend’s code generator to create additional type inference code w.r.t. the exten-
sion parameter types. Hence, when calling getActualType(...) for some expression, assign-
ment, or value declaration the extension requiring the most special fitting parameter type
is chosen. Thus, by means of such partial inference rules that are dedicated to particular
declaration and expression types and that delegate to each other, the type system seman-
tics can be realized very precise, easy to understand and easy to extend. As mentioned in
Sec. 2 a dedicated type system framework can by applied alternatively.

6.5 Target Language Integration

The previous sections focus on development of the DSL, the source meta model and the
code relevant for editors and source model composition. This section addresses the inte-
gration of the target language and target meta model. The simplest method to generate
code in a target language is a model-to-text transformation, which is covered by the Xbase
framework and well documented and explained in related tutorials [EEK+12].

In this paper, we discuss the more complex target code genesis through transformations
into intermediate or target models. The differentiation between an intermediate or target
meta model, as shown in Figure 1, is only of a contextual nature, because an interme-
diate model is subsequently transformed into another model, while the target model, is
serialized into text or other kind persistence with a model-to-text or respectively model-
to-persistence transformation. These last transformation from a model to a persistence
technology is covered by Xtend [AG11] as a model-to-text transformation language and
serialization components provided by EMF [SBPM09]. We focus therefore, on the target
meta model construction as a requirement for the model-to-model transformation.

The composition of a target meta model requires knowledge of the structure of the type
and expression system of the target language, and in addition, knowledge of the storage
system, especially when the target model is stored in a database, XML or XMI-file. The
retrieval of type and expression system information of a language can be a complex and
time consuming task. Therefore, it is good advice to look for existing meta models first.
The Eclipse modeling project3 provides meta models to cover OCL. Java and Xtend meta
models can be found in the Xtend repositories4. In other scenarios, an XSD might be
available to describe the language and its storage model. For example, special computers
for automation processes, called programmable logic controllers (PLC), are programmed

3http://eclipse.org/modeling/mdt/
4http://git.eclipse.org/c/xtend/org.eclipse.xtend.git

149



often languages specified in IEC EN 61131-3 [IEC03]. A storage meta model for these
languages, formulated in an XSD, is provided by the PLCOpen group5. Such XSD can
automatically be transformed into an EMF meta model6. As the PLCOpenXML specifi-
cation does not handle the textual languages of the standard, this portion has to be added
by hand. However, the meta model genesis from the XSD is still a big time saver, as the
graph and structural based languages of the IEC EN 61131-3 are covered.

For some languages, there might not be a meta model or schema available. In that case, it
has to be constructed from scratch. To start the construction, the base types of a language
and the set of compositional typing rules have to be determined. The meta model for a
target language type system is then constructed in the same way, as the DSL’s meta model,
honoring the collected typing rules.

The resulting target meta model, contains a type system taxonomy, conceptually following
the structure from Figure 2, tailored for the target language. It is important to restrain the
meta-model to the properties of the target language. Any addition makes the meta model
more complex and harder to understand. Furthermore, such additions are often triggered
by separate concerns and should therefor be modeled in a separate meta model. However,
the target meta model type system can be simpler than the target language type system to
restrain transformation development.

6.6 Type Transformations

The transformation of a source model into a target model is the central element of every
DSL. The transformation and the semantics of the target language determine the imple-
mented semantics of the DSL, which must adhere to the semantics specified in the DSL
design. We identified four relevant activities to guide the transformation development.
First, the partitioning of the transformations. Second, realization of source language con-
cepts. Third, mapping of base types. And fourth, the mapping of complex types.

The primary separation of transformations is along type structure and expression. If a
language has many different type structures, it is advisable to implement them in separate
artifacts. Transformations for expressions can be divided along expression kinds, such as
literals, unary and binary operators, method and function calls, or statements. With Xtend
as transformation language, the partitioning is best realized by separate Xtend-classes.

Source language concepts which are not present in the target language, like garbage col-
lection, synchronization or memory management, must be provided by a runtime system.
Therefore these concepts must be identified, an API must be specified and implemented,
and finally used in the transformation.

The mapping of base types is achieved by collecting them for source and target meta model
together with their ranges and limitations. Even if types in source and target meta model
have similar names, they can be quite different. For example, in Java int is a 32-bit signed

5http://www.plcopen.org/
6http://yoxos.eclipsesource.com/places/node/org.eclipse.xsd.ecore.converter.feature.group
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integer, while in IEC EN 61131-3 INT is 16-bit signed integer and the corresponding type
for the Java type would be DINT.

The mapping could become more complex, when a source meta model type, like inter-
val, cannot be directly mapped to a compatible structure in the target meta model. For
example, an interval type, based on int, has lower and upper bounds defined by arbitrary
integer values. Furthermore, it may either cause an runtime exception when one bound is
exceeded, or wrap, like integers do in CPU architectures. Such type can be mapped to a
target model base type, however to completely realize the semantics in the target model,
the identified assertions must be covered.

To ensure boundaries of source model elements in the target model, all expressions, which
compute data must be identified, and checked whether they can cause a transition from a
valid state to a state prohibited by the source language semantics. For example, an interval
increment cannot be transformed just to a C increment operator variable ++, it must be
embedded in an function either triggering an overflow error or implementing a value wrap.

In some cases, the type of the target language is more limited than the type of the source
language. A typical case are strings in Turbo-Pascal, which use the first byte of a string
to store the length of the string. Therefore, strings cannot exceed 255 characters. Source
languages realizing strings without or with a greater capacity limit cannot be mapped to
a Pascal string. A solution for this particular case are arrays or null terminated buffers,
which are only limited by the underlying hardware model. To implement strings on that
basis, every functionality of the source language must have a corresponding API operation.

Complex types can often be mapped to a combination of record or variant types. Of
special interest are the transformation of sub-typing and sub-classing to type systems not
supporting such facilities. One strategy is to use records holding references to parent types,
as implemented in Objective-C [App09], or expand all types and generate records for each
type. The first, method has its advantages, however, it requires references or pointers for its
realization. Especially, method-calls are mapped to function pointers and held in lookup
tables. For environments without pointers, like the IEC EN 61131-3, sub-typing can be
realized by the second method.

7 Evaluation

We developed TS4DSL out of experiences made in different DSL development projects
and the Xbase project. The evaluation and refinement of the approach was primarily exe-
cuted in the MENGES project [MEG09] evolving the MENGES-DSL [GHH+12]. Subse-
quently, we used our approach to develop languages in context of MAMBA [FvHJ+11].

MENGES The project goal was to develop a DSL and tooling for electronic railway
control centers utilizing industry grade PLCs. PLCs are often programmed in languages
specified in IEC EN 61131-3 [IEC03]. The languages share a common type system, which
provides a wide range of integers, bit vectors, records and intervals. It does not provide
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variant or unit types, dynamic memory management, pointers or references. The latter
three are considered dangerous for reliable real-time systems.

The language was developed in an agile environment, where present methods of our
project partners were formalized into a specification language. In parallel a code gen-
erator was implemented. This lead soon to a hard to maintain generator, grammar and
type resolution. To solve these issues, we integrated compiler construction methods into
the agile DSL process, which allowed us to continue the development in an agile fashion,
by introducing new programming concepts for language users, evaluating these concepts,
and modifying them according to user requests.

MAMBA The MAMBA-project addresses software measures and the interpretation of
measurements taken during static or dynamic analysis of software. The measures and
observations are modeled in an EMF meta model for SMM [Obj11], which is hard to
compose by hand. As a solution, two languages the Measure Definition Language (MDL)
and the Measure Query Language (MQL), have been developed. An SMM model can
reference any EMF model representing an executable specification. Measures in an SMM
model reference nodes in an specification expressed by a scope query in OCL. Therefore,
MDL and MQL must be able to support the various type systems used by these specifica-
tions. The measures declared in MDL return values conforming to types declared in SMM,
which consist of a base type and a unit, e.g., count, meter or time. These measures can be
used in equations and are instantiable in MQL. They can handle values based on the SMM
type system or the type system of the language used to specify a software system.

Early versions of the languages avoided the complexity of the combination of multiple type
systems, which made type checks in expressions impossible. Errors could only be detected
at runtime. Errors in scope expressions might even be overlooked and remain undetected.
Our approach helped to develop better type checks and honor the various involved type
systems, which make MDL and MQL applicable for bigger measuring models.

The present application of TS4DSL showed that using type system concepts are helpful to
develop DSLs in a safe way and keep them maintainable while neglecting those concepts
can lead to languages hard to maintain.

8 Conclusion

TS4DSL allows us to develop more complex DSLs, which exceed simple API front end
DSLs. It enables DSL developers to think and use type systems in their DSLs, which
allows them to implement checks and generators in a structured way. In our case stud-
ies, TS4DSL improved the quality of the developed languages and helped to keep them
maintainable and extensible for future developments. Software projects, which use multi-
ple languages to address different aspects of an application, can profit from our approach,
which explicitly incorporates type systems in the DSL development process.

The development of type resolution and subsequently, type checking, with Xtend can be
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made in a more compact way as in Java itself. However, it is only loosely coupled with
the grammar description in Xtext and algorithms have to be repeatedly implemented for
every language. Therefore, the incorporation of a suitable notation for semantics and
type resolution into our approach, like Xsemantics or XTS is part of our future work.
In addition, we want to discuss further type concepts, like let and generics, and provide
guidelines and best practice for their realization in an public accessible way. Furthermore,
a better integration of syntax and semantics would be preferable, as well as better ways to
compose languages and meta-models out for grammar fragments.
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