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Abstract: Executing complex applications on Grid infrastructures necessitates the guaran-
teed allocation of multiple resources. Such guarantees are often implemented by means of
advance reservations. Reserving resources in advance requires multiple steps — beginning
with their description to their actual allocation. In a Grid, a client possesses little knowl-
edge about the future status of resources. Thus, manually specifying successful parameters
of a co-reservation is a tedious task. Instead, we propose to parametrize certain reservation
characteristics (e.g., the start time) and to let a client define criteria for selecting appropri-
ate values. Then, a Grid reservation service processes such requests by determining the
future status of resources and calculating a co-reservation candidate which satisfies the cri-
teria. In this paper, we present the Simple Reservation Language (SRL) for describing the
requests, demonstrate the transformation of an example request into an integer program us-
ing the Zuse Institute Mathematical Programming Language (ZIMPL) and experimentally
evaluate the time needed to find the optimal co-reservation using CPLEX.

1 Introduction

In many scientific disciplines, large scale simulations and workflows for analyzing petascale
data sets necessitate the adoption of Grid technologies to meet their demanding resource re-
quirements. The use of Grid resources, however, poses new challenges, because of their hetero-
geneity, geographic distribution and autonomous management. Especially, the efficient execu-
tion of complex applications, e.g., large simulations of black holes with Cactus or distributed
observations of astronomic objects with robotic telescope as envisioned in the AstroGrid-D
project [GACOQ7], requires the co-allocation of multiple Grid resources. Because Grid re-
sources are autonomously managed, the allocation of them at the same time or in some se-
quence cannot be guaranteed by standard Grid job management schemes, i.e., a broker decides
where to submit a job, but has no control on when the job is actually executed.

This problem can be circumvented by acquiring reservations for the required resources. A
reservation guarantees that a specific resource can be allocated to a request at the desired
time. Typically, reservations have a fixed duration and are acquired some time in advance.
Considering the vast number of resources eligible for reservation, a user may pose constraints
on which resources are selected. In addition, the provider may want to optimize the utilization
of their resources. Hence, a broker has to solve a complex optimization problem to find a
mapping of application components to resources at specific times.

In this paper, we model the mapping problem as an integer programming problem and use a
standard solver to find its best solution. We use the Zuse Institute Mathematical Program-
ming Language (ZIMPL) [Koc04] to describe the integer programming problem and the solver
CPLEX for finding the solution. To simplify the specification of co-reservation requests, we
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propose a simple language for defining the requirements of each part along with the objec-
tive to be optimized. Throughout the paper, we reuse an example presented in our previous
work [RRO5]. The example describes a co-reservation request including temporal and spatial
relationships between atomic request parts.

Reserve 16 CPUs of an IBM p690, 32 CPUs of a PC cluster and a one Gbit/s-network connection
between them, each for six hours between 2007/12/12 06:00pm and 2007/12/15 06:00pm. All reser-
vations must start at the same time. Reserve a visualization pipeline for two hours starting four
hours after the reservation on the IBM p690 begins and a 100 Mbit/s-network connection between
the p690 and the visualization pipeline for the same time.

Outline. We summarize related work in Section 2. The general procedure for processing
co-reservation requests is presented in Section 3. Section 4 describes the Simple Reservation
Language (SRL) for specifying requests in detail. Thereafter, we demonstrate — using the
scenario described above — the transformation of SRL requests into an optimization problem
in Section 5. Then, we present an experimental evaluation of the times to find an optimal
co-reservation candidate in Section 6 and conclude in Section 7.

2 Related Work

In [FKL"99], Foster et al. present GARA, a resource management architecture for reserving
multiple resources in advance. The focus of their work is on the general scheme to guaran-
tee that an application can co-allocate multiple resources at specific times. They also discuss
needed extensions of existing local resource management such that they support advance reser-
vations. Our work focuses on the description and processing of co-reservation requests. The
needed components for processing requests are similar to those in GARA. Hence, our mecha-
nism could be easily integrated in their framework.

Condor ClassAds, proposed by Raman et al. [RLS98], provides a mechanism for matching
atomic requests to resources. Condor ClassAds is a very versatile language to specify both
a user’s request and the offers of the resource providers. The language we propose for de-
scribing reservation requests is conceptually similar to ClassAds, because it is also based on
(attribute, value)-pairs and allows references between different matching parties. The main
reason for not using pure ClassAds was that the processing of them differs from the processing
of multi-resource reservation requests. Liu and Foster extend Condor ClassAds by applying
constraint programming techniques to the problem of selecting resources for execution of im-
mediate requests in a Grid environment [LF03].

In [NLYWOS5], Naik et al. present an integer programming based approach for assigning
requests to heterogeneous resources. In contrast to our work, they consider immediate re-
quests only. That is the resource manager tries to match as many requests to resources at
the current time. Scheduling requests at future times is not considered. The VIOLA meta-
scheduler [WWZ05] schedules parallel compute jobs to multiple resources by incrementally
increasing the advance booking period until all jobs may be allocated. In contrast to our work,
it only supports one criteria — earliest completion time.

18



3 The Reservation Framework

The framework consists of the three main components: the Grid Reservation Service (GRS),
the Local Reservation Service (LRS), and the Resource Information Service (RIS). The general
procedure for processing co-reservation requests is as follows.

@ A user sends a request described by the Simple Reservation Language to the GRS.

@ The GRS queries the RIS to determine resources which support advance reservation and
match the core characteristics such as type and operating system.

® The GRS sends probe requests to the LRSes of these resources to let them provide de-
tailed information about their future status and reservation fees.

@ The GRS transforms the user request including the probed information into the ZIMPL
format and thereby instantiates the optimization problem.

® The GRS determines the best co-reservation candidate. A co-reservation candidate maps
each request part to a (resource, starttime)-pair.

® The GRS tries to acquire the reservations given by the best co-reservation candidate.
Thus, for each (resource, starttime)-pair the GRS sends a reserve request to the LRS
of the resource resource.

@ 1If some reserve requests are denied, the GRS refines the optimization problem and pro-
ceeds with step ®.

If all reserve requests are admitted or no solution could be found eventually, the GRS
sends a response message to the client.

Note, in this paper we focus on the steps @, @ and ®. Step @ is implemented in todays
Grid resource brokers (cf. Section 2). Methods for determining the future status of resources
are described in our previous work [RR06, RSR06]. The actual acquiring of the reservations
(step ®) and the refinement in case of failures (step @) are subject to future work.

4 The Simple Reservation Language

The purpose of the Simple Reservation Language (SRL) is twofold. First, it enables clients
to easily describe reservation requests without requiring them to know the details of a math-
ematical programming language. Second, the Grid Reservation Service (GRS) can efficiently
pre-process reservation requests, because the SRL uses a small set of attributes and limited
value domains only. Despite these restrictions, the language is powerful enough to describe
a large variety of requests as will be seen in the following subsections. As outlined in the
introduction, we regard the co-reservation problem as an optimization problem. Formally, a
co-reservation request must define a set of variables including their domains, a set of con-
straints on these variables’ domains and an objective function which is to be optimized. The
SRL follows a less formal approach by letting a user define certain attributes, i.e., the SRL
vocabulary, which are transformed into the corresponding mathematical terms.
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Table 1: Attribute scopes of the Simple Reservation Language.

Used in Scope  Description

key & value TS Temporal specification of a request
key & value QOS QoS specification of a request
key & value MISC  Miscellaneous attributes of a request

key CON Constraints of a request
key OBJ Objectives of a request
value RVC Attributes of a reservation candidate

4.1 Structure of a Co-Reservation Request

A co-reservation request consists of multiple atomic requests as well as constraints and objec-
tives defining the relationships between any two atomic requests. Each SRL request is a set of
(attribute, value)-pairs. The domain of a value depends on the attribute and will be discussed
in the following subsections. The syntax of an attribute is defined as

<attribute> := <id>’.’<scope>’.’<key>.

The key of an attribute is an alpha-numeric string. For each scope there exist several keys
with a pre-defined meaning which we will present along with the discussion of the scopes. In
addition, any other string may be used, but its meaning is only defined by the request itself.
The scope denotes a specific group of attributes. We distinguish three kinds of scopes, based
on its appearance in an (attribute, value)-pair (cf. Table 1). The component <id> associates
attributes with a specific part of a co-reservation request. Thus, it is possible to reference
attributes of a specific part from within any other part.

4.2 Description of Atomic Requests

The vocabulary of the SRL must cope with the following issues to describe a (meaningful)
atomic request:

e When should the resource be reserved?
e Type and quantity of the resource to be reserved.
e Which constraints must be met?

e Which criteria should be optimized?

Temporal specification. The scope TS defines three attributes e st (earliest start time), let
(latest end time) and duration for specifying, when the resource should be reserved. The
values can be given as epoch seconds or UTC! string.

1UTC stands for Coordinated Universal Time.
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Quality-of-Service Specification. The scope QOS defines attributes for specifying what type
of resource and what quantity or quality of this resource should be reserved. These attributes
are QOS.type, QOS.cpus, Q0S.netbw, Q0S.diskspace. The GRS does not handle
the differences among the corresponding resource types internally. It must just ensure to con-
tact the right local reservation service for each type of resource. The values for QOS . type
are compute, network, storage and visualize. The values for the corresponding
quantity attributes are within the usual domains.

Miscellaneous Attributes. The scope MISC may contain any attribute which does not fit
into the previous categories. For example, it may be used to associate a user id or certificate
with a request which could be necessary for authentication and authorization.

Constraint Specification. The scope CON is used to define constraints on any attributes of
all scopes except CON and OBJ. The key of a CON-attribute can be any alpha-numeric string.
Two different attributes must not use the same key. The syntax of the value of a CON-attribute
is defined as follows.

<con value> := <expr><op><expr>
<expr> = <attribute>|<quantity>
<Op> .= I<I|I<:I‘I::I|I!:I‘I>:I|I>I

The term <attribute> refers to any attribute (except for the scopes CON and OBJ). For
example, the cost IBM.RVC. cost for reserving the requested resources could be limited.
The term <quant ity> specifies a quantity such as 100 Mbit/s.

Objectives Specification. The scope OBJ defines the objective of the request. The objective
is the weighted sum of all sub-objectives. A client must assign a weight to each sub-objective
such that their sum equals one. Because the range of values of the sub-objective attributes may
be very different and not known a-priori, each attribute must be normalized. The syntax of the
actual sub-objective specification is as follows.

<obj> := {'min’|'max’}’,’<attribute>’,’<weight>

The term <attribute> refers to any attribute (except for the scopes CON and OBJ). For
example, to execute the application on the IBM p690 at the earliest moment, the sub-objective
is min, IBM.RVC.begin, 0.6.

Reservation Candidates. The scope RVC contains attributes of a ReserVation Candidate,
which are determined in the probing phase (cf. step ®).

4.3 Description of Co-Reservation Requests

A co-reservation request consists of multiple atomic requests, additional constraints and ob-
jectives defining the relationships among the atomic parts. Relationships among different parts
are enabled by the identifier component <id> of an attribute’s key. Thus, attributes of the
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part <id> can be referenced in the constraints and objectives of any other part. For example,
the same time-constraint in the introduction’s scenario can be specified as IBM.RVC.begin
== PCC.RVC.begin. This scheme is very flexible. Also, workflow-like applications may
be modeled, i.e., that one part should start only after another has finished. In that case the
constraint would be VIS.RVC.begin >= IBM.RVC.end. Additionally, objectives may
reference attributes in different parts. For example, the above workflow application may desire
that its whole execution time is minimized. Such goal can be specified by the sub-objective
min, VIS.RVC.end-PCC.RVC.begin, 10. In Fig. 1, the main parts of the scenario of
the introduction are described using the Simple Reservation Language.

IBM.TS.est = Dec 12 18:00:00 2007 PCC.Q0S.cpus = 32

IBM.TS.duration = 21600 PCC.Q0S.arch = "PC cluster"
IBM.TS.let = Dec 15 18:00:00 2007 PCC.CON.time = PCC.RVC.begin
IBM.QOS.type = compute == IBM.RVC.begin
IBM.QOS.cpus = 16 VIS.TS.duration = 7200
IBM.QOS.arch = "IBM p690" VIS.TS.let = Dec 15 18:00:00 2007
IBM.CON.cost = IBM.RVC.cost <= 10000 VIS.Q0S.type = visualize
IBM.OBJ.cost = min, IBM.RVC.cost, 8 VIS.Q0S.cpus = 4

IBM.OBJ.start = min, IBM.RVC.begin, 10 VIS.Q0S.arch = "SGI Onyx"
PCC.TS.duration = 21600 VIS.CON.time = PCC.RVC.begin+14400
PCC.QO0S.type = compute == VIS.RVC.begin

Figure 1: A co-reservation request described in SRL (in extracts).

5 Transforming SRL Requests into ZIMPL

In the following, we exemplify how SRL requests are transformed into the Zuse Institute Math-
ematical Programming Language (ZIMPL) [Koc04]. The result can then be used by standard
integer programming solvers to find the best reservation candidate. Listing 1 shows the com-
plete implementation of the scenario described in the introduction. It consists of seven parts,
which we will now explain in detail.

Request Structure. The number of atomic request parts is read from a configuration file in
line 2. The example co-reservation request contains 5 parts (one IBM p690, one PC cluster,
one network link IBM—PC, one SGI visualization resource and one network link SGI-IBM).

Reservation Candidates. The set of reservation candidates is initialized in line 5. This set
is transformed into a multi-dimensional array (lines 6-8) to make individual metrics of a can-
didate accessible. Note, by separating the reservation candidates for each part (first index in
array rvc), we ensure that a request is matched to a resource with the required type.

Model Variables. Each atomic request 7 € R must be assigned to a resource s € S at a
certain start time ¢ € 7. Thus, we model the problem with Rx.SxT binary variables (line 11).
The variable xbr, s, ] is set to 1 iff the atomic request r is assigned to resource s at start time ¢.
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Matching and Cost Constraints.

We constrain the number of binary variables set to 1 such

that each request part is only once assigned to a resource (line 14). The total cost for all parts
of the co-reservation are limited in line 15.

Temporal Relationships.

Listing 1: Implementation of the example scenario as integer program in ZIMPL.

# request parts

set P := { read "req.dat” as "<in>" comment "#” };

# reservation candidates

set PRTMV
set RVC
set METRIC :=

# model variables

read

"rvc.dat” as "<1n,2n,3n,4n> 5n” comment "#” default

{ read "rvc.dat” as "<1n,2n,3n,4n,5n>" comment "#"};
proj (PRTMV, <1,2,3>);
proj (PRTMV, <4>);
param rvc [RVC«METRIC] :=

100;

var xb[RVC] binary;

# matching, type and cost constraints

subto once: forall <p> in P: (sum <p,i,j> in RVC: xb[p,i,j]) == 1;

subto cost: (sum <p,i,j> in RVC: xb[p,i,jl«rvc[p,i,j,1]) <= 10000;

# temporal relationships

subto temp1: sum <1,i,j> in RVC: xb[1,i,j]x] == sum <2m,n> in RVC: xb[2,m,n]*n;

subto temp2: sum <1,i,j> in RVC: xb[1,i,j]*]j == sum <3m,n> in RVC: xb[3,m,n]xn;

subto temp3: sum <1,i,j> in RVC: xb[1,i,j]*(]j+14400) == sum <4m,n> in RVC: xb[4,m,n]xn;
subto temp4: sum <4,i,j> in RVC: xb[4,i,j]x]j == sum <5m,n> in RVC: xb[5,m,n]*n;

# spatial
set NET :=

relationships
proj({ read "net.dat” as "<1n,2n>" comment "#” }, <1>);

set ENDS := { <1>, <2> };

param net[NET+ENDS] :=

subto spatl: sum
sum
subto spat2: sum
sum
subto spat3: sum
sum
subto spat4: sum

sum

read

<1,i,j> in RVC:
<m> in NET: sum

<2,i,j> in RVC:
<m> in NET: sum

<1,i,j> in RVC:
<m> in NET: sum

<4,i,j> in RVC:
<m> in NET: sum

# objective function

set OBJS
param CF[P+OBJS]

minimize objectiv

1= read

e

"net.

"coeff.dat”

dat” as

xb[1,i,j]%i ==

<3m,n> in RVC:

xb[2,i,j]xi ==

<3m,n> in RVC:

xb[1,i,j1xi ==

<5m,n> in RVC:

xb[4,i,j]xi ==

<5m,n> in RVC:

as

sum <p> in P:

"<in,2n> 3n” comment "#";

xb[3,m,n]xnet[m,1];

xb[3,m,n]xnet[m,2];

xb[5,m,n]*xnet[m,1];

xb[5,m,n]xnet[m,2];

= { <1>, <2>, <3> }; # 1—cost, 2—-time & 3—bandwidth
"<in,2n> 3n” comment "#”;

( sum <p,i,j> in RVC: xb[p,i,jlxrvc[p,i,j,1]*xCF[p,1]
+ sum <p,i,j> in RVC: xb[p,i,jlxrvc[p,i,j,2]xCF[p,2]

— sum <p,i,j> in RVC: xb[p,i,j]l*rvc[p,i,j,3]*CF[p,3]

)

We require that the start times of part one (IBM p690) and part

two (PC cluster) must be equal (line 18). Also, the start times of part one and part three
(network IBM—-PC) must be equal (line 20). The next constraint (line 22) requires that the SGI
visualization part begins exactly four hours after the computational parts begin (e.g., the IBM
part). The last temporal constraint (line 24) ensures that the network between the IBM and the
SGl is reserved from the same start time as the SGI part. Note, due to the fixed durations of all
parts we do not need to put constraints on the end times of the reservations.
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Table 2: Parameters of the experimental evaluation.

Parameter Values
no. of resources 1,2,3,4,5,6,7,8,9,10, 12,14, 16, 18, 20
no. of candidates 7,12, 23,34, 67,133, 265, 397

corresponding time gap 11h, 6h, 3h, 2h, 1h, 30m, 15m, 10m

Spatial Relationships. We assume a fully connected network with bi-directional links. Thus,
n resources (compute and visualization) are connected by n? links. The network configura-
tion is initialized from line 27 to line 29. The actual spatial relationships are defined for the
network link between the IBM p690 part and the PC cluster (lines 31/32 and 34/35) and for
the network link between the IBM p690 part and the SGI visualization pipeline (lines 37/38
and 40/41). For the sake of simplicity, we use the number of a resource as its location identifier
(cf. multiplication with i on the left side of each comparison).

Objective Function. We use the weighted sum as global objective function (lines 47-50). It
aggregates three sub-objectives — minimum cost, minimum start time and maximum available
bandwidth. Because the value ranges of the metrics differ significantly (cost: 0-20000, start
time: 0-237600, bandwidth: 0-1000), we scale them by appropriate factors (the maximum of
each value range). These factors are the coefficients initialized in line 45.

6 Experimental Evaluation of the Scalability

Many optimization problems, in particular integer problems, suffer from a large search space.
We studied the impact of the number of eligible resources and the number of reservation candi-
dates on the time needed to find the optimal co-reservation candidate. In the absence of work-
load traces for co-reservations we randomly generated the reservation candidates (step ®). For
each parameter pair (no. of resources, no. of candidates), we generated 10 experiments and
calculated the average time for finding the optimal co-reservation candidate. Table 2 lists the
parameters of all experiments, which were sequentially executed on a SUN Galaxy 4600 16
core system with 64 Gbytes of RAM. Each experiment used a single processor core only.

Fig. 2 shows the solving time against the number of reservation candidates. Each curve repre-
sents the experiments with a specific number of resources. Additionally, the graph shows two
approximations of the solving time. For the experiments with one resource, the solving time
increases exponentially with the number of candidates. For the experiments with 20 resources,
the solving time increases quadratically with the number of candidates.

Whether the solving time is acceptable in real world scenarios depends on several parameters.
First, a client may want a response as soon as possible. Second, the calculated future status (cf.
step @) may only be valid for a certain time. Thereafter, the “best” co-reservation candidate is
sub-optimal or reservation attempts (cf. step ®) simply fail. Third, the longer the book-ahead
time (earliest start time) of the co-reservation is, the longer solving times may be acceptable.
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The experimental results provide two means for limiting the solving time — (1) the GRS may
ask the resource providers for a limited number of reservation candidates and (2) use less
eligible resource than found through the resource information service query (cf. step @).

time gap between reservation candidates
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Figure 2: Solving time for several numbers of resources against the number of reservation candidates.

7 Conclusion

Resource allocation for complex applications requires guarantees to ensure desired quality-of-
service levels. Such guarantees are typically implemented by reserving the requested resources
in advance. We demonstrated an approach for specifying and processing co-reservation re-
quests. The requests are specified in a simple yet powerful language and transformed into
an integer program. Our approach is motivated by the observation, that finding the best co-
reservation is an optimization problem. The use of a mathematical programming language
makes extensions and refinements easy to implement. Moreover, there already exist well-
known tools for solving optimization problems described in such languages. Of course, that
flexibility comes at some cost namely the time needed to find a solution. The performance ex-
periments revealed means to limit the solving time, i.e., by limiting the number of reservation
candidates and/or by using less eligible resources. Nevertheless, the flexibility of the approach
facilitates many extensions such as specifying data dependencies and optimizing data transfers.
Also, moldable requests may be supported to optimize the utilization of the resources.
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