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1. lntroduction 

The impetus to design and build a 'virtual CAMAC 
processor' came from experience in using 
CAMAC in a multi-user, multi-programming 
environment, gathering data for nuclear physics 
experiments [1]. Two factors were major influ­
ences in the design: 

1. Programs tend to have a short life-time in 
this environment. As the needs of each 
experiment changed, it was found necessary 
to recode programs. This meant that not 
only high-level (FORTRAN) source code 
changed but also the individual CAMAC 
operations. Changing the high-level code is 
relatively easy, but manipulating bit 
patterns representing CAMAC commands 
was, by contrast, difficult and more prone 
to programmer error. 

2. To speed data gathering, autonomous trans­
fer of data between CAMAC modules and 
computer memory was implemented, the 
program controlling these transfers being 
hardware encoded within CAMAC. 

Recognising that CAMAC had considerable pro­
cessing power independent of the Central Proces­
sor Unit, it was a reasonable step to suppose 
that the CAMAC controller and the main processor 
could form a dual processor system, each 
accessing a common memory for their instruct­
ions (see Fig. 1). 

Rather than build such a processor in hardware 
at the outset, it was decided to build a 'virtual 
processor' [ 2 ]  . A simple hardware interface 
between computer and CAMAC dataway was sup­
plemented by a software driver which interprets 
sequences of instructions placed in memory as 
CAMAC sub-routines. This approach has the 
advantage that, if the instruction set and address­
ing technique chosen for the virtual processor is 
found unsuitable, it can be readily altered. 

2. Processor structure 

The processor is designed to obtain its instruct­
ions from a read-only program segment. Data is 
held in a read-write permitted data segment. The 
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Fig. 1 Schematic diagram of CAMAC and CPU as a dual processor system 

base addresses of these two segments are passed 
to the CAMAC processor whenever a sequence of 
CAMAC operations is called, the addresses being 
held in a Program Segment Register and Data 
Segment Register, respecti vely. In the present 
implementation each segment has a directly 
addressable length of 256 words. 

The processor has, in addition, three active 
registers: 

P the program counter (8-bit) 

Q the CAMAC condition register (1-bit) 

X an index register (8-bits) 

A two-address structure has been chosen, the 
form of the instruction word being shown in Fig. 2. 
Because the CAMAC processor has been imple­
mented on a 16-bit word length central processor, 
it was found convenient for the CAMAC instruction 
to occupy two central processor words, i.e. 32-
bits. The simplest type of instruction provides a 
direct transfer of data between a CAMAC module 
(addressed by crate, C, Module, N, and Sub­
address, A) and a location in the data segment, 
given by the displacement address D. All 32 
CAMAC functions are implemented in this way, 
thougb half of them do not require a data address-
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Fig. 2 The CAMAC processor instruction word 
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A number of address modes have been imple­
mented. These provide for: 

1. Direct CAMAC addressing. 
2. lndirect CAMAC addressing, the direct 

address being found in the data segment. 
3. Direct data segment addressing. 
4. lndirect data segment addressing with pre­

indexing. 
5. lndirect data segment addressing with post­

indexing. 
6. Direct program segment addressing. 

i nstruction 
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Fig. 3 Flow chart showing access to CAMAC interpreter 

part being data-less transfers. However, CAMAC 
data-less functions 8, test-look-at-me, and 27, 
test-status, which affect the condition register, 
Q, have an address part. The contents of the 
specified address are set logical 'true' or 'false' 
depending upon whether Q is 'set' or 'cleared'. 
There are in addition 'non-CAMAC' operations 
whieh permit operations on the X and P registers. 
The latter provide branch unconditional and 
branch conditional on the value of Q. There is a 
return instruction which provides an exit from the 
CAMAC segment. Any instruction which cannot 
be decoded is treated as a return. 

3. Processor implementation 

The virtual processor has been written in about 
300 instructions of re-entrant code to operate on 
a Honeywell DDP-516 computer working under 
the real-time executive OLERT. lt runs at the 
priority level of the calling progr�m which holds 
its own set of CAMAC registers. In this way 
higher priority processes may interrupt the 
operation of the CAMAC processor, the context 
of the interrupt process being automatically pre­
served. lt is necessary to inhibit processor inter­
rupts only for short periods. These are essen­
tially during the sequence of operations to transfer 
data over the CAMAC data-way, when the 
operations -

set up command word: transmit data: test Q 

- must be treated as an indivisible instruction. 

The user program accesses the virtual proces­
sor through the FORTRAN call statement: 

CALL CAMAC (data segment, program 
segment name) 

or its assembly language equivalent. 
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The data segment is an integer array declared 
in a DIMENSION statement. The program segment 
can either be an internally named array or an 
external subroutine name. The sequence of opera­
tions carried out in accessing, running and return 
from the virtual processor is shown in Fig. 3. lt 
will be seen that entry to the executi ve is through 
a link which holds workspace and the registers P, 
X and Q peculiar to the calling program. 

4. Possible processor extensions 

The author is aware that there are alternative 
approaches to the design of a CAMAC processor, 
real or virtual, and that many of the features of 
the present design result from the environment in 
which it has been implemented. With increasing 
experience and the freedom to manipulate the 
design of the processor, it is hoped that improve­
ments will follow and omissions be remedied. 
Already certain desirable operations can be seen. 
lt would be useful to have a conditional brauch 
instruction, where the condition was set by the 
pattern of data transferred between store and 
CAMAC data-way. A far more significant omis­
sion, and one which the author intends to remedy 
soon, is the lack of real-time features. Because 
CAMAC provides for autonomous data transfer 
and interrupts, the virtual processor needs addi­
tional instructions so that parallel processing can 
be accomplished. To do this satisfactorily 
requires information from the user program to 
identify a point in his program whose execution 
can be scheduled when both the current CPU pro­
cess and the parallel CAMAC process have termi­
nated. While the author knows, in principle, how 
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to achieve this, for demonstration purposes the 
present implementation has to be made compatible 
with the structure of OLERT, the environment in 
which the code will be executed. 

lt is the author's belief that, by making it more 
easy to program CAMAC operations, especially 
in a real-time environment, a better understand­
ing of the structure of CAMAC programs will 
emerge. This will, in turn, be reflected in the 
improved definition of CAMAC statements in high­
level languages. Moreover, defining a range of 
processors, real or virtual, on which CAMAC 
statements are to be executed provides ready 
implementations f or the high-level language state­
ments. 

1. LANGSFORD, A., JARVIS, O.N.' and wmTEHEAD, c., 
'DAMUSC - a direct access, multi-user, synchrocyclo­
tron computer', AERE R. 6832. 

2. LANGSFORD, A., 'An implementation of a virtual 
CAMAC processor and its assembly language', AERE 
R. 6914. 

Discussion 

Q. What is the speed of the hardware in your sys­
tem? 

A. The computer itself is a microsecond machine, 
but the interpretation is appreciably slower than 
this: not fast enough for high speed CAMAC 
operations. 

Q. What is the size of your interpreter? 

A. About 300 instructions. 
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