
An implementation of a virtual

CAMAC processor

A. LANGSFORD

AERE Harwe/1, England

1. lntroduction

The impetus to design and build a 'virtual CAMAC
processor' came from experience in using
CAMAC in a multi-user, multi-programming
environment, gathering data for nuclear physics
experiments [1]. Two factors were major influ­
ences in the design:

1. Programs tend to have a short life-time in
this environment. As the needs of each
experiment changed, it was found necessary
to recode programs. This meant that not
only high-level (FORTRAN) source code
changed but also the individual CAMAC
operations. Changing the high-level code is
relatively easy, but manipulating bit
patterns representing CAMAC commands
was, by contrast, difficult and more prone
to programmer error.

2. To speed data gathering, autonomous trans­
fer of data between CAMAC modules and
computer memory was implemented, the
program controlling these transfers being
hardware encoded within CAMAC.

Recognising that CAMAC had considerable pro­
cessing power independent of the Central Proces­
sor Unit, it was a reasonable step to suppose
that the CAMAC controller and the main processor
could form a dual processor system, each
accessing a common memory for their instruct­
ions (see Fig. 1).

Rather than build such a processor in hardware
at the outset, it was decided to build a 'virtual
processor' [2] . A simple hardware interface
between computer and CAMAC dataway was sup­
plemented by a software driver which interprets
sequences of instructions placed in memory as
CAMAC sub-routines. This approach has the
advantage that, if the instruction set and address­
ing technique chosen for the virtual processor is
found unsuitable, it can be readily altered.

2. Processor structure

The processor is designed to obtain its instruct­
ions from a read-only program segment. Data is
held in a read-write permitted data segment. The

96

CAMAC sub-system Computer sub-system

Memory

CAMAC
processor 1-.!...s--.1

CAMAC dataway

modules Computer peripherals

Fig. 1 Schematic diagram of CAMAC and CPU as a dual processor system

base addresses of these two segments are passed
to the CAMAC processor whenever a sequence of
CAMAC operations is called, the addresses being
held in a Program Segment Register and Data
Segment Register, respecti vely. In the present
implementation each segment has a directly
addressable length of 256 words.

The processor has, in addition, three active
registers:

P the program counter (8-bit)

Q the CAMAC condition register (1-bit)

X an index register (8-bits)

A two-address structure has been chosen, the
form of the instruction word being shown in Fig. 2.
Because the CAMAC processor has been imple­
mented on a 16-bit word length central processor,
it was found convenient for the CAMAC instruction
to occupy two central processor words, i.e. 32-
bits. The simplest type of instruction provides a
direct transfer of data between a CAMAC module
(addressed by crate, C, Module, N, and Sub­
address, A) and a location in the data segment,
given by the displacement address D. All 32
CAMAC functions are implemented in this way,
thougb half of them do not require a data address-

F

ILI
C
+cl

C N
1

A 1
M jxoj D

1 1 1 1 1 1 1 1 1 1 1
F function code N module
L length bit A sub-address
CM CAMAC address mode M displacement address mode

Xe CAMAC index bit Xo displacement index bit

C

Main
Program

crate D displacement field

Fig. 2 The CAMAC processor instruction word

CALL CAMACt-----,

Enter LINK
(conta ins -----�
workspace)

enter
OLERT

fetch
instruction
i ncrement P

execute

A number of address modes have been imple­
mented. These provide for:

1. Direct CAMAC addressing.
2. lndirect CAMAC addressing, the direct

address being found in the data segment.
3. Direct data segment addressing.
4. lndirect data segment addressing with pre­

indexing.
5. lndirect data segment addressing with post­

indexing.
6. Direct program segment addressing.

i nstruction
return NO struc- >---....
tion

L-----<iry ES

Conti nue
Main
Program

Fig. 3 Flow chart showing access to CAMAC interpreter

part being data-less transfers. However, CAMAC
data-less functions 8, test-look-at-me, and 27,
test-status, which affect the condition register,
Q, have an address part. The contents of the
specified address are set logical 'true' or 'false'
depending upon whether Q is 'set' or 'cleared'.
There are in addition 'non-CAMAC' operations
whieh permit operations on the X and P registers.
The latter provide branch unconditional and
branch conditional on the value of Q. There is a
return instruction which provides an exit from the
CAMAC segment. Any instruction which cannot
be decoded is treated as a return.

3. Processor implementation

The virtual processor has been written in about
300 instructions of re-entrant code to operate on
a Honeywell DDP-516 computer working under
the real-time executive OLERT. lt runs at the
priority level of the calling progr�m which holds
its own set of CAMAC registers. In this way
higher priority processes may interrupt the
operation of the CAMAC processor, the context
of the interrupt process being automatically pre­
served. lt is necessary to inhibit processor inter­
rupts only for short periods. These are essen­
tially during the sequence of operations to transfer
data over the CAMAC data-way, when the
operations -

set up command word: transmit data: test Q

- must be treated as an indivisible instruction.

The user program accesses the virtual proces­
sor through the FORTRAN call statement:

CALL CAMAC (data segment, program
segment name)

or its assembly language equivalent.

97

The data segment is an integer array declared
in a DIMENSION statement. The program segment
can either be an internally named array or an
external subroutine name. The sequence of opera­
tions carried out in accessing, running and return
from the virtual processor is shown in Fig. 3. lt
will be seen that entry to the executi ve is through
a link which holds workspace and the registers P,
X and Q peculiar to the calling program.

4. Possible processor extensions

The author is aware that there are alternative
approaches to the design of a CAMAC processor,
real or virtual, and that many of the features of
the present design result from the environment in
which it has been implemented. With increasing
experience and the freedom to manipulate the
design of the processor, it is hoped that improve­
ments will follow and omissions be remedied.
Already certain desirable operations can be seen.
lt would be useful to have a conditional brauch
instruction, where the condition was set by the
pattern of data transferred between store and
CAMAC data-way. A far more significant omis­
sion, and one which the author intends to remedy
soon, is the lack of real-time features. Because
CAMAC provides for autonomous data transfer
and interrupts, the virtual processor needs addi­
tional instructions so that parallel processing can
be accomplished. To do this satisfactorily
requires information from the user program to
identify a point in his program whose execution
can be scheduled when both the current CPU pro­
cess and the parallel CAMAC process have termi­
nated. While the author knows, in principle, how

98

to achieve this, for demonstration purposes the
present implementation has to be made compatible
with the structure of OLERT, the environment in
which the code will be executed.

lt is the author's belief that, by making it more
easy to program CAMAC operations, especially
in a real-time environment, a better understand­
ing of the structure of CAMAC programs will
emerge. This will, in turn, be reflected in the
improved definition of CAMAC statements in high­
level languages. Moreover, defining a range of
processors, real or virtual, on which CAMAC
statements are to be executed provides ready
implementations f or the high-level language state­
ments.

1. LANGSFORD, A., JARVIS, O.N.' and wmTEHEAD, c.,
'DAMUSC - a direct access, multi-user, synchrocyclo­
tron computer', AERE R. 6832.

2. LANGSFORD, A., 'An implementation of a virtual
CAMAC processor and its assembly language', AERE
R. 6914.

Discussion

Q. What is the speed of the hardware in your sys­
tem?

A. The computer itself is a microsecond machine,
but the interpretation is appreciably slower than
this: not fast enough for high speed CAMAC
operations.

Q. What is the size of your interpreter?

A. About 300 instructions.

	Teil 1_erl
	doc03671820190521095123
	doc03671920190521095137
	doc03672020190521095151
	doc03672120190521095203
	doc03672220190521095218
	doc03672320190521095229
	doc03672420190521095247
	doc03672520190521095301
	doc03672620190521095317

	Teil 2_erl
	doc03672720190521095329
	doc03672820190521095352
	doc03672920190521095404
	doc03673020190521095422
	doc03673120190521095433
	doc03673220190521095449
	doc03673320190521095500
	doc03673420190521095525
	doc03673520190521095537
	doc03673620190521095555

	Teil 3_erl
	doc03673720190521095608
	doc03673820190521095634
	doc03673920190521095646
	doc03674020190521095711
	doc03674120190521095723
	doc03674220190521095742
	doc03674320190521095756
	doc03674420190521095813
	doc03674520190521095828
	doc03674620190521095846

	Teil 4_erl
	doc03674720190521095859
	doc03674820190521095917
	doc03674920190521095934
	doc03675020190521100000
	doc03675120190521100013
	doc03675220190521100030
	doc03675320190521100048
	doc03675420190521100107
	doc03675520190521100128
	doc03675620190521100146

	Teil 5_erl
	doc03674720190521095859
	doc03674820190521095917
	doc03674920190521095934
	doc03675020190521100000
	doc03675120190521100013
	doc03675220190521100030
	doc03675320190521100048
	doc03675420190521100107
	doc03675520190521100128
	doc03675620190521100146

	Teil 6_erl
	doc03675720190521100207
	doc03675820190521100234
	doc03675920190521100300
	doc03676020190521100318
	doc03676120190521100335
	doc03676220190521100355
	doc03676320190521100412
	doc03676420190521100430
	doc03676520190521100448
	doc03676620190521100506

	Teil 7_erl
	doc03676720190521100532
	doc03676820190521100549
	doc03676920190521100612
	doc03677020190521100629
	doc03677120190521100644
	doc03677220190521100701
	doc03677320190521100724
	doc03677420190521100740
	doc03677520190521100755
	doc03677620190521100811

	Teil 8_erl
	doc03677720190521100826
	doc03677820190521100845
	doc03677920190521100900
	doc03678020190521100916
	doc03678120190521100930
	doc03678220190521100947
	doc03678320190521101001
	doc03678420190521101030
	doc03678520190521101045
	doc03678620190521101109

	Teil 9_erl
	doc03678720190521101126
	doc03678820190521101149
	doc03678920190521101205
	doc03679020190521101221
	doc03679120190521101237
	doc03679220190521101255
	doc03679320190521101312
	doc03679420190521101329
	doc03679520190521101343
	doc03679620190521101404

	Teil 10_erl
	doc03679720190521101417
	doc03679820190521101435
	doc03679920190521101448
	doc03680020190521101506
	doc03680120190521101525
	doc03680220190521101544
	doc03680320190521101601
	doc03680420190521101636
	doc03680520190521101655
	doc03680620190521101714

	Teil 11_erl
	doc03680720190521101727
	doc03680820190521101744
	doc03680920190521101759
	doc03681020190521101817
	doc03681120190521101831
	doc03681220190521101848
	doc03681320190521101902
	doc03681420190521101920
	doc03681520190521101936
	doc03681620190521101954

	Teil 12_erl
	doc03681720190521102010
	doc03681820190521102028
	doc03681920190521102046
	doc03682020190521102100
	doc03682120190521102120
	doc03682220190521102136
	doc03682320190521102152
	doc03682420190521102210
	doc03682520190521102225
	doc03682620190521102247

	Teil 13_erl
	doc03682720190521102312
	doc03682820190521102330
	doc03682920190521102348
	doc03683020190521102408
	doc03683120190521102428
	doc03683220190521102448
	doc03683320190521102506
	doc03683420190521102526
	doc03683520190521102544
	doc03683620190521102603
	doc03683720190521102618
	doc03683820190521102635
	doc03683920190521102655
	doc03684020190521102712
	doc03684120190521102727
	doc03684220190521102748
	doc03684320190521102807
	doc03684420190521102828

