Konferenzbeitrag
JumpXClass: Explainable AI for Jump Classification in Trampoline Sports
Lade...
Volltext URI
Dokumententyp
Text/Conference Paper
Dateien
Zusatzinformation
Datum
2023
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
Movement patterns in trampoline gymnastics have become faster and more complex with the increase in the athletes’ capabilities. This makes the assessment of jump type, pose, and quality during training or competitions by humans very difficult or even impossible. To counteract this development, data-driven solutions are thought to be a solution to improve training. In recent work, sensor measurements and machine learning is used to automatically predict jumps and give feedback to the athletes and trainers. However, machine learning models, and especially neural networks, are black boxes most of the time. Therefore, the athletes and trainers cannot gain any insights about the jump from the machine learning-based jump classification. To better understand the jump execution during training, we propose JumpXClass: a tool for automatic machine learning-based jump classification with explainable artificial intelligence. Using elements of explainable artificial intelligence can improve the training experience for athletes and trainers. This work will demonstrate a live system capable to classify and explain jumps from trampoline athletes.