
René Röpke und Ulrik Schroeder (Hrsg.): 21. Fachtagung Bildungstechnologien (DELFI),   

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 41 

cba doi: 10.18420/delfi2023-12 

Mitigating Biases using an Additive Grade Point Model: 

Towards Trustworthy Curriculum Analytics Measures 

Frederik Baucks1 and Laurenz Wiskott1 

Abstract: Curriculum Analytics (CA) tries to improve degree program quality and learning 

experience by studying curriculum structure and student data. In particular, descriptive data 

measures (e.g., correlation-based curriculum graphs) are essential to monitor whether the learning 

process proceeds as intended. Therefore, identifying confounders and resulting biases and mitigating 

them should be critical to ensure reliable and fair results. Still, CA approaches often use raw student 

data without considering the influence of possible confounders such as student performance, course 

difficulty, workload, and time, which can lead to biased results. In this paper, we use an additive 

grade model to estimate these confounders and verify the validity and reliability of the estimates. 

Further, we mitigate the estimated confounders and investigate their impact on the CA measures 

course-to-course correlation and order benefit. Using data from 574 Computer Science Bachelor 

students, we show that these measures are significantly confounded and mislead to biased 

interpretations. 
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1 Introduction 

Trustworthy results of measures used to describe and understand student activity in degree 

programs are essential to ensure fair and appropriate decisions for improving degree 

quality. Therefore, identifying student-dependent and course-dependent confounders and 

bias is central to guaranteeing equal opportunities for all students.  

Curriculum Analytics (CA), as a sub-field of Learning Analytics (LA), aims to assess 

degree program quality and course relations using student data and program structure. CA 

methods associated with process mining and prediction use descriptive measures such as 

the correlation between course grades [Ba18; Ra21] and order benefit (OB) [Gu21] to 

describe course relations and build graphical curriculum representations. In order to 

measure relations, e.g., the content overlap of courses, using course grades, confounders 

[HR20] need to be identified and mitigated [WGD22]. Existing descriptive CA measures 

try to mitigate confounders, like student performance, by, e.g., normalizing student grades 

but do not quantify student and course-specific confounding that may bias the 

interpretation of the measured outcome. In addition, the normalization of grades often 

leads to a loss of information, e.g., correcting grades using the grade point average (GPA) 
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[Oc16], which is known to be confounded by itself [HSS19]. The resulting confounded or 

even biased graphical representations of the curriculum are further used in process mining 

and prediction methods, leading to concept drift issues [BCR18] or violations of the IID 

assumption, respectively. 

This paper addresses the open problem of quantifying and mitigating possible confounders 

in descriptive CA measures. We adopt a matrix factorization (MF) approach [RRS10] to 

model statistically independent confounders accounting for student performance, course 

difficulty, workload, and time. This methodology can quantify confounding in widely used 

CA measures such as course-to-course correlation and OB and mitigate it. Using course 

point grades of a Computer Science bachelor9s degree program, we reveal that measure 

interpretations can be significantly and misleadingly biased, if confounders are not 

mitigated. When employing CA analyses, we reveal that our additive model is a valuable 

preprocessing tool. Our key contributions are 1.) Additive modeling as a CA 

methodology: We modify MF to additively model different student and course-dependent 

confounders as statistically independent random variables, namely student performance, 

course difficulty, workload, and time. Further, we test the estimated confounders for 

validity and reliability. Using the independence of the modeled estimates, we can quantify 

their impact using variance and also mitigate them. 2.) Case study application: Using 

data from CS students over nine years, we quantify the confounding in the grade data and 

the effect of mitigation on the widely used course-to-course correlation and the OB 

between courses. We observe that student performance and course difficulty confounders 

had the most impact, accounting for 54.8% of the variance, while workload and time 

accounted for less than 2%. 

2 Related Work 

Curriculum Analytics (CA) is a recognized branch of Learning Analytics (LA) [Gr16] and 

examines the structure of curricula to understand degree programs and improve their 

quality [Hi22]. One central tool of using curriculum structure is a representation of the 

curriculum, usually graphical, called a curriculum graph [Ra21]. These rely on descriptive 

measures (e.g., correlation), prerequisites, or process mining techniques (e.g., Bayesian 

networks). When no prerequisites are available, typically, curriculum representations use 

course grades to catch relations between courses, e.g., a prerequisite structure [Ba18]. 

Although grades are known to suffer from confounders [Oc16], sometimes called 

confounding bias [WGD22], these confounders are usually not addressed in the 

representations if the data set is to small for causal modelling. This paper focuses on grades 

used to calculate descriptive measures for building curriculum graphs. We tackle the open 

problem of optimally identifying, quantifying, and mitigating confounders to address 

distribution shifts in hindsight applications such as visualization, process mining (concept 

drift [BCR18]), or next-term grade prediction (IID assumption [BSW23]). Only some 

approaches, not necessarily used in CA, already consider potential confounders in grades 

and their induced biases, namely normalization, item response theory (IRT), MF, and 
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covariate adjustment (CAD).  

Normalization tries to remove the effects course difficulty and student performance from 

student grades in different contexts. The standard approaches here are to subtract the GPA 

as a measure of student performance, model the course difficulty as the distance between 

students9 GPA and course outcomes [Oc16], or normalize grades course-wide to account 

for course difficulty [Gu21]. A significant downside to this is that the GPA is confounded 

by itself [Jo97] and that, therefore, the subtraction and normalization may lead to a 

considerable loss of information. IRT addresses this problem by modeling students9 
grades using student and course-dependent latent traits in a logistic model [BSW23]. In 

degree-wide applications, IRT is used to model students9 GPAs independently of the 
courses attended [Jo97] or to model course difficulties independently of students attending 

[BSW23]. One limitation is that the latent traits shift to zero mean and unit variance, so 

the latent traits are not easy to interpret.  

Like IRT, MF approaches model grades using latent variables and low dimensional 

estimates of the interaction between students and courses. MF is commonly used for 

recommender systems and next-term grade prediction [BBR21]. Most MF approaches 

incorporate a so-called student bias and course bias. In contrast to IRT, these biases are 

modeled additively and not with unit variance. This additivity allows us to fit more so-

called biases while staying within the original scale of the grades, leaving grades and 

biases comparable. This approach is comparable with CAD, in which variables (e.g., 

confounded GPA) are fitted in a multivariate regression model to address their influence 

on course grades [WGD22]. In our approach, we are fitting latent variables using MF as 

approximately statistically independent summands, eliminating the confoundedness of the 

fitted variables in CAD approaches (e.g., GPA).  

The grade prediction MF approach by Barrollet et al. [BBR21] is closest to our work. They 

tried to capture static student and course information in degree program data. The resulting 

one-dimensional MF model yielded a good fit using student and course bias estimates. In 

contrast, our paper employs a reduced MF approach, setting the lower dimensional 

representation to zero, fitting only bias factors, which we call confounders. Further, we re-

purpose MF to describe exclusively historical course grade data, fitting student 

performance, course difficulty, workload, and time confounders. Our work mitigates these 

confounders and enables a bias-reduced perspective on CA measures. 

3 Methodology 

We assume a prerequisite-free curriculum consisting of courses offered several times over 

different semesters. We define these offerings as course offerings (CO) and write the word 

course for the time-aggregated COs. 
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3.1 Confounding and Bias 

To reduce possible bias in interpreting CA measure results, it is essential first to define 

confounding. Assume, we are given grades in two COs, ÿ1 and ÿ2, and a third random 

variable  �, where the grades in ÿ1 and  ÿ2 depend on  �. Suppose we calculate the 

correlation between the grades of COs ÿ1 and ÿ2, then variable  confounds the 

correlation as a measure. For example, � could be the student performance measured by 

the grade point average (GPA). That is, GPA (�) affects the measure correlation through 

the statistical dependence, e.g., we expect high GPA students to perform well in both 

COs ÿ1 and ÿ2.  

To describe bias in that context, suppose we do not want to calculate the correlation 

between CO9s ÿ1 and ÿ2 but rather estimate the courses9 content overlap (OV) based on 

the grades. For example, an estimator for OV could again be the correlation of the grades 

of the two COs ÿ1 and ÿ2. That is, we approximate OV by correlation and denote the 

correlation as the estimate of OV. Then our result is impacted because the confounder � 

shifts our estimate (correlation) systematically. Therefore, it is, in particular, shifted away 

from the concept OV that we expect it to estimate. This shift, then, is called bias or biased 

interpretation. Overall, confounders can lead to bias if they systematically shift our 

estimate away from what we want to measure. So, it is highly relevant what concept we 

want to measure, and which estimate we use to measure it to distinguish between 

confounding and bias. The first step to counteract bias is to determine and eliminate 

confounders. Because then we can reduce the confounding effect on the grades of ÿ1 

and ÿ2 and thereby get a more bias-free OV estimate. Therefore, confounders (e.g., 

student performance) and, in this context, as a source of bias, should be identified and 

eliminated. In theory, we can write any grade �ý,� of a student Ā in CO ā, as the sum of the 

confounder Āý,� and the deconfounded grade �ý,�:  �ý,� = �ý,� + Āý,�.  (1) 

To align with MF [RRS10], �ý,� and Āý,� are assumed to be statistically independent. If we 

know �ý,�, Āý,�, and �ý,� for any student Ā and CO ā, we can calculate the variances of each 

summand, which add up to the variance of �ý,� due to the independence:  �ÿÿ(�ý,�) = �ÿÿ(�ý,�) + �ÿÿ(Āý,�) (2) 

Further, we quantify the confounding in the grade data �ý,� as the variance of the 

confounder Āý,� relative to the variance of the overall grade �ý,� + Āý,�: �ÿÿ(Āý,�)�ÿÿ(�ý,�) =  �ÿÿ(Āý,�)�ÿÿ(�ý,�) + �ÿÿ(Āý,�) (3) 

  

This equality becomes helpful in the following additive grade point model, where we 
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approximate different confounders as independent summands, so that we can write the 

confounder Āý,� as a sum of more specific confounders. Then, we can use the variances to 

quantify the confounding in the grades using Eq. 3. 

3.2 Additive Grade Point Model 

To model grades as the sum of independent summands, we use a bias-only approach moti-

vated by MF, where we set the factorization to zero [KRB21]. The model approximates 

each grade �ý,� as the sum of confounders, namely student performance  Āý, CO difficulty Ā�, workload Ā�, and time Āþ. Let Υ be the set of tuples of students and CO grades that 

exist in our data and ĀΥ the mean of all grades, and �ý,�  the model error, then we write:    �ý,� = �̃ý,� + �ý,� = (ĀΥ + Āý + Ā� + Ā� + Āþ) + �ý,�     (4) 

CA measures, such as the correlation between course grades, are only applied to historical 

data. Especially for COs held in the past, we do not expect to gain more grades in the 

future. Therefore, we estimate the confounders only in-sample since we know the exact 

error �ý,� for each grade here. We declare ĀΥ + �ý,� as the deconfounded grade. We 

optimize the grade estimates �̃ý,� for all (Ā, ā) ∈ Υ using the optimization problem 

min ∑ (�ý,� 2  �̃ý,�)2 + ÿ(|Āý| + |Ā�| + |Ā�| + |Āþ|),(ý,�)∈Υ   (5) 

and stochastic gradient descent for optimization with step size � = 0.005 and 

regularization parameter ÿ = 0.02 since these led to convergence. Using the mean grade 

value ĀΥ as a positioning summand and the regularization in the optimization, we can 

identify confounders on the same scale as the confounded grade �ý,�. Using this 

identification, we can mitigate the confounders from �ý,� by subtraction while staying on 

the same grade scale, so that the deconfounded grade ĀΥ + �ý,� stays comparable to �ý,�.  

Model Assumption: The central model assumption is the time-invariance of the 

confounders. For courses, we address the invariance by using COs. For workload and time, 

we use categorical variables. However, whether an invariant student confounder Āý is 

sufficient must be verified [BBR21]. Therefore, we establish reliability in our student 

confounder by employing a time-dependent split-half test described in Section 3.3. Here, 

we compare estimates of models fitted to student9s first- and second-half grades.  

Model Fit and Independence: To test the model fit, we compare the variances of the 

confounded grades �ÿÿ(�ý,�) against the variances of the model estimates �ÿÿ(�̃ý,�) +�ÿÿ(�ý,�). Due to the variance argument made in Eq. 3, these should be equal if we achieve 

optimal model fit. We expect the variance of the fitted confounder estimates to be higher 

if they correlate. In addition, we investigate the statistical independence of each summand 

using Pearson correlation, which is a necessary criterion. All confounders should be 

uncorrelated to the deconfounded grade ĀΥ + �ý,� and to each other. 
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3.3 Validity and Reliability Assessment 

Concurrent Validity: We study concurrent validity by considering correlations between Āý vs. GPA and Ā� vs. mean CO grade. In line with IRT research [BSW23], we expect 

high positive correlations indicating that the student performance confounder measures 

student performance and CO difficulty confounder measures CO9s difficulty. 

Internal Consistency Reliability: To test the stability of our model, we employ two split-

half reliability tests [BSW23]. First, we split the training data into two randomly assigned 

disjoint data sets of equal size and calculate the Pearson correlation between the estimates 

of the two fitted models. Second, we employ a time-dependent split-half test for the time-

invariance assumption (Section 3.2). We separate each student9s grades in the data set into 
the earlier and later half. Then we compare the fitted confounders of the earlier and later 

half of the student9s history using Pearson correlation. We expect a high correlation 
indicating a stable time-invariant student performance confounder. 

3.4 Curriculum Analytics Measures 

To visualize the impact of the estimated confounders, we calculate two established CA 

measures for our curriculum twice, where we aggregate the COs over time into single 

courses as it is common in the literature. First, we calculate each measure for all course 

combinations similar to the literature, and second, using the deconfounded estimates  ĀΥ +�ý,�  as grades, leading to bias-reduced CA measure estimates of course relation.   

Correlation: CA methods use correlation to estimate course content overlap or other 

course relations, e.g. [Ba18; Ra21], to construct graphical representations of the 

curriculum. We calculate Pearson correlation using minimum �-value and sample size 

according to the existing literature on CA. We use the standard threshold of �< 0.05 and 

calculate the correlations between grades of courses with a minimum size ý = 20 [Ba18].  

Order Benefit: Order benefit (OB) assesses the influence of the order of a pair of courses 

on the corresponding grades [Gu21]. For two courses, ý, þ let �ý→þ be the subset of 

students who first took course ý and then þ in some COs. Then for all students Ā ∈�ý→þ exist grades �ý,ý(ā1) and �ý,þ(ā2) with student-dependent times ā1 and ā2 for 

courses ý and þ with ā1 < ā2. We denote the set of grades of course ý of the 

group �ý→þ as �ý(�ý→þ) and the corresponding ordered mean grade as Āý(ý → þ) ≔Ā�ý(�ý→þ). Analogously for Āþ(ý → þ), Āý(ý → þ), and Āþ(ý → þ). Then, for two 

courses ý, þ, the order benefit þþý→þ from course ý to course þ is defined as: þþý→þ ≔ Āý(ý → þ) + Āþ(ý → þ) 2 Āý(þ → ý) 2 Āþ(þ → ý).  (8) 

This measure is only significant if there is sufficient data. We set two thresholds to 

guarantee that the two order groups �ý→þ and �þ→ý are sufficiently large and comparable 
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in size [Gu21]: 1.) �ý→þ, �þ→ý > 50, 2.) 
min(�ý→þ,�þ→ý)max (�ý→þ,�þ→ý) > 0.30. 

4 Experiments 

Data Set: For our research, we utilized a data set containing exam scores from a CS 

bachelor9s program at Ruhr-University Bochum in Germany. The data set includes data 

from 1098 students who took 19 compulsory courses between 2013 and 2022, including 

still enrolled, graduated or drop-out students. The grading scale for each exam is from 0 

to 100, with a passing score of at least 50. Each CO grade was determined via a single 

written examination taken at the end of the semester. Before the data was obtained, 

anonymization was performed, which involved removing all demographic information 

and adding a uniform stochastic noise between -5 to 5 to each grade. To ensure a more 

stable parameter fit, we filtered the data to include only students with at least 10 non-

zero grades and COs with at least 20 students. Further, we limited the grades to first try-

exams to strengthen student confounders reliability. The resulting data set comprises 574 

students and 127 COs. In addition to exam data, we have the CO8s corresponding 
workload and recommended semester in which a CO should be examined. We model both 

workload and time as categorical variables. For workload, we measure each students mean 

compulsory CO workload over all semesters. The resulting distribution of all students9 
mean workloads is split into three equal-sized parts, where each part consists of the same 

amount of students8 mean workloads. Then we label each student with {0, 1, 2} 
corresponding to the subpart of the distribution. We model time, similarly, as a variable in 

{0, 1, 2}. We assign the label 0 if the semester the student takes a CO is before the 

recommended time, 1 if taken as recommended, and 2 if taken later. �ÿÿ(�ý,�) �ÿÿ(�̃ý,�+�ý,�) �ÿÿ(�ý.�)  �ÿÿ(Āý) �ÿÿ(Ā�) �ÿÿ(Ā�) �ÿÿ(Āþ) 

715.248 737.831 303.787 318.746 100.504 14.498 0.295 

Tab. 1: Variance model fit showing an error of 22.583 between grade point variance and fitted 

Variance, indicating a sufficient decorrelated fit. Student and CO confounders Āý, Ā� account for 

most of the variance, whereas workload and time confounders show small variances.    

4.1 Model Fit 

Additive Model Fit: To evaluate the quality of the model fit, we calculate the difference 

of the variances of the grades in the data set and the respective estimates in Table 1. The 

difference of 22.583 is relatively small and indicates the approximated independence of 

the summands in Eq. 4. The variance of the student performance and CO difficulty 

confounders is the highest, accounting for 54.8% of the total variance. The workload 

confounder {0: -6.715; 1: 1.721; 2: 0.948} indicate poorer performance among students 

with a low mean workload. Categories 1 and 2 do not seem to have an impact, and the 
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time confounder categories have negligible effects on grades (<1.000).  

Independence of Summands: A statistically significant low Pearson correlation of less 

than 0.06 provides the necessary criterion that our modeled confounders are approximately 

independent. In Fig. 1, we see the correlations of all confounder estimates on the left side, 

and the scatter plot of Āý and the deconfounded grade ĀΥ + �ý,�  on the right side, showing 

the most structure of all variable combinations, which remains very weak.  

 

Fig. 1: [Left] Table showing Pearson correlations between the estimates of the additive model 

indicating very low correlations for all combinations. [Right] Scatter plot indicating statistically 

significant (p<0.001) absence of correlation between deconfounded grades ĀΥ + �ý,�  and student 

confounder estimate Āý as fitted by the additive model.  

  

Fig. 2: [Left] Scatter plot indicating high correlation (ÿ = 0.966,  � < 0.001) between student9s 
GPA and confounder Āý as fitted by the additive model. [Right] Scatter plot indicating high 

correlation (ÿ = 0.928, � < 0.001) between mean CO grades and fitted CO confounder Ā�. 

4.2 Validity and Reliability Assessment 

Concurrent Validity: In order to quantify the validity of the student performance and CO 

difficulty confounders, we show in Fig. 2 two scatter plots indicating very high statistically 

significant Pearson correlation (r > 0.900, p< 0.001) for both Āývs. GPA and Ā� vs. mean 

CO grades. These show us that the confounders we fitted do describe what we expect them 

to describe: student performance and CO difficulty.  

Internal Consistency Reliability: Following the methodology, we first obtain Pearson 

correlations for the student performance and CO difficulty confounders using a random 

split-half test. The highly significant correlations (� < 0.001) for the student confounder Āý with 0.83 and the CO confounder Ā� with 0.92 indicate a stable model fit. Second, the 

time-dependent split-half reliability test points to a similar correlation for Āý by 0.84, 
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indicating that the student confounder estimates are stable for the first and second half of 

student grades. The high correlation suggests that a time-invariant student confounder is 

an adequate assumption in our setting. 

4.3 Curriculum Analytics Measures 

We calculate OBs and correlations for each course pair in the degree program. We 

visualize the pairs using graphs, where vertices represent courses and edges represent the 

value of a CA measure. The visualizations in Fig. 3 and Fig. 4 show graphs of the OBs 

and correlations, where the order of courses corresponds to the university9s recommen-

dation. We arrange the graph vertices from bottom to top in semester ascending order. 

 

Fig 3: Curriculum graphs with colored OB edges indicating the beneficial direction of study. Color 

intensity and edge thickness corresponds to the value of the OB. [Left] We us the grades �ý,�. 

[Right] We use deconfounded grades  ĀΥ + �ý,�. 

Order Benefit: Since the OB is a directed and asymmetric measure, we visualize only 

positive edges in Fig. 3. The thickness and color intensity corresponds to the value of the 

OB, where the color scale is the same for both figures. The left side shows the OBs for the 

confounded grades �ý,�. Notably, there are no edges to first-semester courses, indicating 

that students violate the recommendation in first-semester courses not enough and, 

therefore, not meeting the thresholds. For existing edges, we observe that most point from 

bottom to top in the recommended direction of study. Compared to that on the right side, 

we can observe a different picture when using deconfounded grades. In general, edge 

weights appear less intense, and edges point far more often from top to bottom against the 

recommendation. The mitigation has an enormous impact on all edges of the graph, which 
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often even change directions, indicating that the OB is largely confounded and biased as 

an estimate of beneficial course direction.  

Correlation: Correlation is a symmetric undirected measure. Thus, we visualize 

undirected edges on the color scale [0, 1] using the absolute r-value. The graph in Fig. 4 

on the left side, showing the correlation of the confounded grades, is characterized by high 

density. Almost every edge holds the conditions for sample size and p-value. The graph 

of the deconfounded grades (right) is much sparser. Only single edges stand the conditions. 

Similar to OB, mitigation dramatically impacts the results of the measure. Therefore, 

correlation is biased as an estimate of, e.g., course overlap. Interestingly, the edges now 

show expected insights for courses related strongly content wise, e.g., (Mathematics 

I/Mathematics II) and (CompSci I/CompSci II).  

 

Fig. 4: Curriculum graphs with colored correlation edges indicating the correlation of grades pairs 

of courses. Color intensity and edge thickness corresponds to the absolute value of the correlation. 

[Left] We use the grades �ý,�. [Right] We use the deconfounded grades ĀΥ + �ý,�. 

5 Discussion and Future Work 

Our experiments show that the additive model in Eq. 4 can be used to estimate and mitigate 

course offering (CO) and student-specific confounders that induce bias in the context of 

graphical representations of the curriculum. We show that the amount to which 

Curriculum Analytics (CA) measures, such as the order benefit and correlation, are 

confounded can be substantially high. The confoundedness distorts the outcome 

completely and, ultimately, leads to severe bias.  
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We estimated reliable and valid confounder estimates relating to student performance, CO 

difficulty, workload, and time. Student and CO confounder estimates had the most impact, 

accounting for 54.8% of the variance, whereas categorical workload and time confounders 

account for less than 2%. Although the small variance of the workload confounder is in in 

line with research [PBY23], it should be interpreted carefully. Workload, in our setting, is 

limited to the compulsory courses of the degree program and given as a relative position 

to all students. The workload could be distorted by non-compulsory courses that are not 

included in the data, taken together with compulsory courses. Second, the workload 

assigned to courses by the university is not guaranteed to represent the courses well 

[MOC14]. Assessing non-compulsory course grades and the quality of workload 

assignments to courses will be important in future work.  

CA-related process mining and prediction approaches use confounded graphical 

representations of the curriculum. They do not estimate confounders as statistically 

independent variables and even assume time-invariant COs as the concept drift issue in 

process mining [BCR18] or the IID assumption in prediction show. Our additive model 

can mitigate such limitations. However, one possible limitation of our model is the critical 

assumption of a time-invariant student confounder. We accounted for that in two ways. 

First, we limited the data set to first exam attempts. Second, we employed a time-

dependent split-half reliability test that showed the stability of the student confounder. 

Future work can contain an extended model using a time-dependent student performance 

change factor. Then we can include the second exam tries on the student side.  

This limitation does not occur for CO estimates. Similar to item response theory (IRT) 

[BSW23], an exciting line of future research is the investigation of model estimates for 

each CO to monitor CO difficulty independent of students attending. In contrast to IRT9s 
unit variance transformation of confounders, our approach leaves them explainable. 

Compared to normalization and covariate adjustment approaches using student GPAs to 

mitigate confounders [Oc16], our approach yields optimized approximately statistically 

independent confounders. Conversely, mitigation using the possibly confounded GPA 

[Jo97] does not guarantee to catch confounders.   

In conclusion, we hope that additive models for confounders and bias estimation become 

standard when employing CA measures, leading to reliable and fair measure results 

inducing bias-reduced interpretations. 
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