
Extending a UML and OCL Tool for Meta-Modeling:
Applications towards Model Quality Assessment

Khanh-Hoang Doan1, Martin Gogolla1

Abstract:

For developing software in a model-driven style, meta- and multi-level modeling is currently gaining
more and more attention. In this contribution, we propose an approach to extend a two-level modeling
tool to three-level modeling by adding a meta-model at the topmost level. Standard OCL does not
support reĆective constraints, i.e., constraints concerning properties of the model like the depth of
inheritance. By adding an auto-generated instance of the topmost level to the middle level, we can
offer an option for writing reĆective constraints and queries. We apply the extension to demonstrate
the usefulness of meta-modeling for model querying and model quality assessment. A Ąrst proposal
towards level-crossing constraints is also put forward.

Keywords: UML; OCL; Meta-modeling; ReĆective constraints; Model querying; Model quality
assessment.

1 Introduction

Within software development, Model-Driven Engineering (MDE) is playing now a more and
more important role. MDE considers models as central development artifacts, for example by
combining the UML (UniĄed Modeling Language) [Ob15b], and the OCL (Object Constraint
Language) [CG12]. Meta-models play a crucial role in modeling as they deĄne the structure of
models, and meta-modeling [AK03, Bé05] and multi-level modeling [At14, At15, AGC16]
has become a major research topic. Meta-modeling is closely connected to multi-level
modeling because a UML and OCL model, which we call a user model, can be regarded
an instance model, i.e., instantiation of a metamodel. The user model in turn may act as a
type model, which may be instantiated again to a run-time instance model. Following this
process, one obtains a modeling architecture with at least three levels.

Our starting point is a version of the tool USE (Uml-based SpeciĄcation Environ-
ment) [GBR07, GH16] that supports two-level modeling. In this contribution we show how
to extend the tool to three levels of modeling by adding the OMG (Object Management
Group) UML meta-model to the topmost level. In order to make the work with different
modeling levels easier, we provide the option to automatically take a simpliĄed view on

1 University of Bremen, Computer Science Department, E-Mail: {doankh,gogolla}@informatik.uni-bremen.de

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 135

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-sa/4.0/


the meta-model based on the elements of the current input user model. To offer access to
the meta level, a meta-model instance corresponding to the user model is automatically
generated and added to the middle level. By doing that, the user model turns into a instance
model, and therefore modelers can write OCL constraints and queries about the model itself.
We call this type of OCL expressions reflective constraints and queries. Thus the work in this
paper supports meta-models and reĆective OCL constraints and queries, i.e., expressions
that treat the user model itself as data. ReĆective querying helps to explore, understand
and validate models, especially when we model large, complicated systems. For example,
we can utilize reĆective constraints to analyze a model and check for internal quality of
a class diagram. In this paper, we also show the application of reĆective constraints for
model quality evaluation. The quality properties that we deal with in this paper are the
problems on the class diagram might relate to general design issues, e.g., the naming of
elements, or to questions regarding model metrics. Some similar approaches in this Ąeld
have been presented, for example in the works [Ag11, AGO12, LGdL14]. Developers can
use an appropriate method to evaluate their model and Ąnd drawbacks and problems in the
model. The quality assessment method introduced in this contribution uses standard OCL
in our three-layer modeling approach. Our three-layer modeling approach also offers an
extension of standard OCL for level-crossing constraints, which are across all three levels,
since the meta objects and run-time objects are accessible at the same time. An idea of
extending OCL for level-crossing constraints is also presented in the later part of this paper.

The rest of the paper is organized as follows. Section 2 presents the general idea to extend
our two-level tool to a three-level modeling tool. In Section 3 we show how to write
reĆective queries in the extended tool based on the available meta-model. The approach
using reĆective OCL constraints for quality assessment is introduced in Sect. 4. Section 5
presents a Ąrst proposal towards level-crossing constraints. The paper ends with some
concluding remarks and future work in Section 7.

2 Tool-supported Meta Modeling

2.1 Meta-modeling in UML

The OMG has deĄned the Meta-Object-Facility (MOF) [Ob15a] as a fundamental standard
for modeling. MOF provides a four-layer architecture for system modeling (three of them
are shown in Fig. 1). Generally speaking, adjacent layers in the architecture are related by
the instance-of relationship. This means that a lower layer is used for instantiating the next
upper layer. One could also say that the same entities at a middle layer Mi can be (A) objects
for the next upper layer Mi+1 and (B) classes for the entities at the next lower layer Mi−1.

The top layer in the MOF architecture, named M3, is a meta-meta model. This meta-meta
model is the language used to build the metamodels at the lower layer, called M2. The UML
metamodel, which is used to describe the UML, is the most well-known example of a model

136 Khanh-Hoang Doan, Marti Gogolla



at M2 layer. The models at layer M2 describe the elements and the structure of the models
at layer M1. Models at layer M1 can be, for instance, models written in UML. The last and
bottom layer in the MOF architecture is the layer M0 (also called data layer). Models at this
layer describe run-time instances (representations of real-world objects).

2.2 Basics of Meta Modeling in USE

In previous works, we have introduced USE (UML-based SpeciĄcation Environ-
ment) [GBR07, GH16] as a two-level modeling tool, in which a user UML and OCL
model at level M1 (class diagram and constraints) and run-time instances at layer M0 (object
diagrams) are provided. In [Go15], ideas for experimenting with multi-level models in the
two-level tool USE are presented. In the current contribution, we introduce an approach, in
which the MOF architecture is integrated into USE for meta modeling. Roughly speaking,
we now make the third OMG layer M2 explicitly available. Fig. 1 shows the general schema
for our three-level modeling approach in the new version of USE. The model at layer M2
is the UML meta-model (the OMG superstructure) [Ob11]. This meta-model itself is an
explicit UML class model formulated in USE with (currently) 63 classes and 99 associations.
It is preloaded as a type model for all user UML models at layer M1 and is Ąxed during
the modeling process. In the middle of our three-layer modeling approach there is a user
UML and OCL model at layer M1, which is highlighted by the dashed rectangle in Fig. 1.
The key point that makes our approach available for writing reĆective constraints is an
auto-generated meta-instance of the meta-model added to M1 level. Each meta-object is an
instance of a meta-class and the number of generated meta-objects and links is based on the
input user model. For example, if there are two classes in the user model, then two instances
of meta class Class are generated. Our approach visits all user model elements (e.g., classes,
attributes, operations, associations) and generates the corresponding meta-objects and links.
Table 1 shows the mapping between the user model elements and the related meta-model
classes and associations, which are the type elements for the generated meta-objects and
links. In this work, we use the USE speciĄc language SOIL (Simple OCL-based Imperative
Language) [BG11] to create these meta-objects and links.

2.3 Three-layer Model Representation in USE

As discussed before, in the M1 layer we provide two views on the user model. The Ąrst view
is a class diagram view, which can be seen as a type model for the object model at the lower
layer M0. The second view is an object diagram view that is an instantiation of the UML
meta-model at level M2 and that corresponds to the loaded UML user model. These two
views represent the same information and are always in sync.

Fig. 2 contains an example of a three-level modeling representation in USE. The user
model in this example is a simple model, with two classes, Employee and Department, and an

Extending a UML and OCL Tool for Meta-Modeling 137



Instance model

Type modelInstance model

Type model

UML Meta model

Meta model 

instances

Run-time instances

UML Class model

M2

M1

M0

<<instanceOf>>

<<instanceOf>>

<<viewOf>>

<<viewOf>>

User 

model

Fig. 1: General schema for three-layer model representation.

association WorksIn as shown in the right middle part of Fig. 2. As mentioned above, the full
meta-model includes 63 classes and 99 associations. Therefore, viewing the full meta-model
is not practical and sometimes not necessary, because many of the meta-model elements
might not be used to describe the current user model. For example, the meta-model class
Operation is not used to describe any element in the Employee-Department model. Starting
from these observations, we provide a simpliĄed view for the meta-model, as shown in the
upper part of Fig. 2. To construct the simpliĄed view from the full meta-model, we drop all
unnecessary classes and associations, which are not needed for any element of the current
user model. In the simpliĄed view, we only show the meta-model elements, i.e., classes
and associations, that the user model needs as type elements to instantiate model elements.
Table 1 shows the mapping between the user model elements and the related meta-model
classes and associations.

In each row, the item in the Ąrst column is a user model element, and the items in the second
column are the classes that directly relate to the user model element, i.e., a typing model
element. The third column contains the related meta-model associations (the subscript
text includes the names of association ends corresponding to the classes). Based on this
mapping, we can detect which meta-model elements will be displayed in the simpliĄed
view. For example, if a class in the user model contains attributes then the Property

metaclass and two associations, i.e., Classclass Ű PropertyownedAttribute and DataTypeDataType Ű
PropertyownedAttribute will be shown. Concerning the example and as the result of the
described mapping, only three classes, Class, Property, Association, and the corresponding
associations are shown in the simpliĄed meta-model view for the Department-Employee
user model. Additionally, we still provide a full meta-model view, in case the developer
wants to explore it.

138 Khanh-Hoang Doan, Marti Gogolla



Fig. 2: Three-layer model representation in USE.

Extending a UML and OCL Tool for Meta-Modeling 139



The left middle part in Fig. 2 is the user model represented as an instance of the meta-model.
As can be seen, every element of the user model is an instance of a class from the meta
model. Each instance is named as a combination of the name of the corresponding element
from the user model and the meta-model class from which it is instantiated. For example,
the object WorksInAssociation is an instance of metaclass Association and its name combines
ŚWorksInŠ, the name of the association from user model, and ŚAssociationŠ, the name of
the meta-model class. The object diagram shown in the lower part of Fig. 2 is a run-time
instance of the user model. It is the model at layer M0. ŚCSŠ and ŚAndyŠ are instances of the
Department class and the Employee class, respectively.

There is a number of derived links between objects in the meta-instance view. However,
to make the meta-instance view at layer M1 more focussing on the instanceOf aspect, we
only show the direct links and do not show these derived links. The two views in layer M1
describe one model. They are equivalent and kept in sync. Each element in the user
model class diagram view, e.g., a class, an attribute or an association, is presented as a
meta-instance in the meta-instance view. If there is any change in the user model, e.g., a
name change, an addition or a deletion of an element, the object diagram in meta-instance
view will be updated. An example of a synchronous change on the views at layers M1
and M2 is presented and highlighted in Fig. 3. The change on the user model is made by

Tab. 1: Relationship between user model elements and meta-model elements.

User model elements Related UML
meta-model
classes

Related UML meta-model associations

Class Class

Attribute Property Classclass Ű PropertyownedAttribute
DataTypedataType Ű PropertyownedAttribute

Association Association ClassendType Ű Associationassociation

Association End Property Associationassociation Ű PropertymemberEnd
Associationassociation Ű PropertynavigableOwnedEnd
Associationassociation Ű PropertyownedEnd

Operation Operation Classclass Ű OperationownedOperation
DataTypedataType Ű OperationownedOperation

Parameter Parameter Operationoperation Ű ParameterownedParameter

AssociationClass AssociationClass

Generalization Generalization Classclass Ű ClasssuperClass
GeneralizationGeneralization Ű ClassspeciĄc
GeneralizationGeneralization Ű Classgeneral

RedeĄned Attribute/ Rede-
Ąned Association End

Propertyproperty Ű PropertyredeĄnedProperty

Subsetted Attribute/ Sub-
setted Association End

Propertyproperty Ű PropertysubsettedProperty

140 Khanh-Hoang Doan, Marti Gogolla



(A) adding the operation ŚnumberOfEmp(): IntegerŠ into class Department. Consequently,
two corresponding meta-instances are synchronously (B) added to the meta-instance view,
i.e., the Department_numberOfEmp:Operation instance and the IntegerDataType:DataType instance
for the return data type ŚIntegerŠ. And synchronously, the metaclass Operation and related
associations are (C) added to the simpliĄed meta-model view (at layer M2).

3 Tool-based Reflective Querying

The access to the meta-level supported by standard OCL [Ob06] is limited, therefore writing
reĆective queries, e.g., ŞĄnd the classes related to a given class c and their relevant rolesŤ, is
impossible. In this section, we will introduce how our approach supports more meta-level
access capabilities for writing reĆective queries within the extended tool.

3.1 Meta-level Accessibility in OCL

Standard OCL is a formal language for writing constraints and queries on UML models.
OCL expressions are formulated on the level of classes (M1) and their semantics is applied
on the level of objects (M0). Given a meta object t: OclType, the following table shows the
list of supported OCL meta-level access capabilities.

Tab. 2: OCL built-in meta-level access

Expression Semantics

t.name() : String Get the name of the type t

t.attributes() : Set(String) Get the set of names of all attributes of t

t.operations() : Set(String) Get the set of names of all operations of t

t.associationEnds() : Set(String) Get the set of names of all association ends navigable from t

t.supertypes() : Set(OclType) Get the set of all direct supertypes of t

t.allSupertypes() : Set(OclType) Get the transitive closure of the set of all supertypes of t

As we can see, with these limited meta-level access capabilities, standard OCL cannot
express a number of reĆective queries and constraints. The following list presents several
reĆective queries that cannot be expressed with the standard OCL.

1. Find all classes related to a given class

2. Find names of all subclasses of a given class

3. Find all abstract classes

4. Find all classes that have more than 10 attributes

Extending a UML and OCL Tool for Meta-Modeling 141



Fig. 3: Synchronous changes on the views of layer M1 and M2.

142 Khanh-Hoang Doan, Marti Gogolla



5. Find all classes that have more than 5 subclasses

6. Calculate the number of classes in a user model

7. Check for the setter and getter methods of all attributes

8. Find all classes of a user model that have no subclass

These queries, however, can be expressed with our three-level modeling approach introduced
in the previous section. In the next section, we will show how to formulate and execute
reĆective queries in the extended tool.

3.2 Writing Reflective OCL Querying in Tool USE

As introduced in the previous section, our approach supports a three-layer UML and OCL
speciĄcation: instances, model, and meta-model. Through the tool support, one can access
the meta-model and create OCL queries for the user model by considering it as an instance
of the meta-model. Model querying using the meta-model approach provides possibilities
for considering the elements contained in a model, for example, by accessing the attributes,
operations, and referenced elements of a given model element, by executing comprehensions
and quantiĄed expressions. A query is an OCL expression on the meta-model layer, and
the result is a Boolean value or a set of user model elements in form of instances of a
meta-model type element. Model queries such as ŞĄnd the classes related to a class and
their relevant rolesŤ cannot be formulated in OCL directly. However, our meta-modeling
approach can deal with this kind of model query. For example, the query ŞĄnd classes
related to class Department via an associationŤ on the Employee-Department example can be
formulated by the following OCL expression and executed by our tool as shown in Fig. 4.

The Association meta class is the type element for associations in the user model and endType

is an end of a derived association that can be used to navigate from the Association meta
class to the Class metaclass. DepartmentClass is the meta-instance of the Class metaclass; its
name is a combination of the user model element and the corresponding metaclass. The
result of executing this query, i.e., Bag{EmployeeClass}, is also shown in Fig. 4.

Fig. 4: Model query example: Find related classes.

Extending a UML and OCL Tool for Meta-Modeling 143



Fig. 5: Model query example: Find abstract classes.

Another example for model querying is presented in Fig. 5. The example there is an
Employee hierarchy model, a typical subclass-superclass generalization model with a
four-level inheritance structure. For example, one might want to Ąnd all abstract classes
within this model. The OCL query to perform this task is stated in Fig. 5. In particular,
isAbstract is a Boolean attribute of the metaclass Class in order to deĄne whether a class at
level M1 (in a user model) is abstract or not.

4 Model Quality Assessment with Reflective Constraints

Writing reĆective constraints is now possible with our meta-modeling approach. ReĆective
constraints can be exploited for many applications, one of them is model quality assessment.
Model quality assessment helps modelers to detect errors or mistakes on their models, to
Ąx bugs and to improve the models. These assessment properties might include design
properties: absence of isolated classes, respecting naming conventions (e.g., the name
of every element must obey the camelCase convention) or metrics properties (e.g., a
generalization hierarchy is not too deep). By visual inspection, we can identify several
quality problems in the example model in Fig. 5:

1. There is one isolated class, i.e., Director. An isolated class is a class which is not
involved in an association or in the inheritance hierarchy.

2. The name of the class consultantManager does not start with a capital letter (assuming
the class names should obey the camelCase convention).

3. The attribute name : String is repeated in all subclasses of the class Manager. It should
be deĄned in the superclass.

However, evaluating and detecting these kinds of quality problems on large and complicated
models might take time and might even be impractical. In this section, we introduce a

144 Khanh-Hoang Doan, Marti Gogolla



Fig. 6: The workĆow of model quality assessment process

proposal that employs OCL utilizing the meta-level modeling approach as presented before.
Thus, we can automatically evaluate quality properties of a user model.

Fig 6 shows the workĆow of the model quality evaluation process. Firstly, the property must
be formulated by the developer as a Boolean-valued reĆective OCL expression. The next
evaluation and analysis steps will be performed by tool USE. The reĆective OCL expression
will be evaluated. If the evaluation yields True, the property is satisĄed and the model
respects this property. On the contrary, if the property fails, the developer might be interested
in the parts of the model that violate the property. Returning to the example in Fig. 5, we
want to check the Ąrst problem mentioned in the section beginning, i.e., whether there are
isolated classes in the user model. To achieve this, we formulate an OCL expression for the
property.

Class.allInstances()->select(c | c.typeElement->isEmpty() and

c.superClass->isEmpty() and c.subClass->isEmpty())->isEmpty())

In this example, we navigate from a metaclass c to related associations through the typeElement

role name. The superClass and subClass role names are used to navigate from the metaclass
c to its superclass and subclass, respectively. The assessment result is False as shown in
Fig. 7. That means the property is violated. It can be seen from the user class diagram in
Fig. 5 that there is one isolated class, i.e., the class Director.

In the case of simple models, one can manually Ągure out the elements that cause the
violation of an assumed property. However, with a large, complicated model, this can be
hard work and can sometimes be impossible. Our tool supports designers to analyze such
properties and to look for the reason for the unsatisĄability. Particularly the USE evaluation

Extending a UML and OCL Tool for Meta-Modeling 145



Fig. 7: Example of model assessment and analysis.

146 Khanh-Hoang Doan, Marti Gogolla



browser allows developers to dive into the details of the formula evaluation and identify the
spots in the object diagram that contribute to the fact that the formula is not satisĄed.

The USE evaluation browser in the lower part of Fig. 7 can be obtained by clicking the
ŚBrowserŠ button on the right hand side of the OCL expression evaluation window in Fig. 7.
The browser window decomposes the expression into sub-parts in a hierarchical structure,
and every part is evaluated. From the evaluation browser, we can see that there is only one
violating element, i.e., one isolated class, which is the Director class. For further analysis,
one can expand sub-expressions and explore the evaluation of other sub-parts of the formula
as shown in Fig .7.

5 Towards an Approach for Level-Crossing Constraints

Level-crossing plays an important role in multi-level modeling. Standard OCL, however,
only supports formulating constraints on the level of classes (M1) and their semantics
concerns the level of objects (M0). That means it is impossible to write expressions on
objects at different linguistic levels, e.g., the expression ŞClass.allInstances().allInstances()Ť
is syntactically invalid in OCL. Looking back to our approach on three-level modeling,
we can see that developers now can access meta objects as well as run-time objects at the
same time. Therefore, we can say that our three-level modeling approach offers enough
semantics for extending OCL for multi-level-crossing constraints. Let us consider the
following level-crossing constraint, which is an invalid, ill-typed constraint in standard
OCL.

Class.allInstances().allInstances()->forAll(age>18)

Assuming every class in the model has an age attribute with Integer type, this constraint
ensures that the value of the age attribute of all instances of all classes is over 18. As we can
see, the semantics of the Ąrst part of the constraint, i.e., Class.allInstances(), concerns the meta-
level, and the semantics of the second part of the expression, i.e., allInstances()->forAll(age > 18),
concerns the model level. The result of the meta-level part has type Set(Class). Unfortunately,
the allInstances() operation (in standard OCL [Ob06]) is applicable only on type Class.

To overcome this issue, one could work with the forAll collection operation between the
meta-level expression and the model-level expression. If we handle a term of type Set(Class)

with the forAll iterator this gives the option to access a single Class, on which the model-level
expression can be applied.

Class.allInstances()->forAll(c | # c.allInstances()->forAll(age > 18) # )

Naturally, we have to distinguish meta-level sub-expressions and model-level sub-expressions.
In other words, we have to indicate in OCL, which sub-expression belongs to which
level (meta-level or model-level). To achieve this, we introduce an additional notation in
OCL expressions, i.e., #...#. This indicates that the expression within #...# is a model-level

Extending a UML and OCL Tool for Meta-Modeling 147



expression. As the result, we propose a formula template for a level-crossing constraint as
shown below.

<meta-level OCL expression>->forAll(c | # <model-level OCL expression> #)

Generally speaking, using this formula template, one can write constraints that go from the
M2 to the M0 level through the M1 level. This capability supports writing more powerful and
Ćexible constraints. Instead of using the universal quantiĄcation it would also be possible to
use an existential quantiĄcation. Other OCL collection operations, e.g. one, are feasible as
well. Working out details is subject to future work. Our proposed level-crossing formula
template has a few restrictions: (a) the meta-level expression must return the type Set(Class),
(b) the model-level expression must be a Boolean-valued expression, and (c) the result of
the overall level-crossing expression is always a Boolean value.

6 Related Work

There is a number of other proposals, which are related and similar to our work, that have
been introduced in recent years. The tool Melanee [AG12] is designed as an Eclipse plug-in,
supports strict multi-level metamodeling and facilitates general purpose languages as well as
domain speciĄc languages. Another tool is MetaDepth [dLG10] allowing linguistic as well
as ontological instantiation with an arbitrary number of meta-levels supporting the potency
concept. The framework Modelverse introduced in [Mi14] can be used to model a four-level
language hierarchy. The work in [BKK16, IGS14] uses F-Logic as an implementation
basis for multi-level models including constraints. In contrast to these approaches, our
contribution deals with traditional two-level UML/OCL modeling approaches by extending
them for meta-modeling and exploits added meta-data for writing reĆective constraints and
level-crossing constraints with OCL. One commonality between our work and these above
mentioned approaches is the introduction of elements in the middle level that have both
type and instance facets.

The idea of copying the M2-model instance to lower levels in the MOF meta-model
architecture and exploiting it for reĆective constraint writing is also presented in [Dr16]. In
that paper, the meta instance is added to the M0 level, together with the run-time instances,
through instantiation and reiĄcation processes. Adding elements to the M0 level is a major
difference between the work in [Dr16] and our approach, because in our work, the meta
instance is generated and added to the M1 level. Therefore, in order to write a reĆective
constraint or query with our approach, we only need to go from the M2 level to the M1 level.
This means we do not need to extend the OCL for writing reĆective constraints or queries.

7 Conclusion

This contribution has proposed an extension of the tool USE that supports three-level
modeling where the middle level can be seen at the same time as an object diagram, i.e.,

148 Khanh-Hoang Doan, Marti Gogolla



the instantiation of the upper level model, and as a class diagram, i.e., the type model for
the lower level. Based on these ideas, we present an approach for reĆective constraints
and queries within the extended tool and the application of this approach to model quality
assessment. A Ąrst proposal towards level-crossing constraints was also introduced: a
proposal that offers writing more powerful and Ćexible constraints.

Future work includes the following topics. First of all, we would like to work out within
our approach formal deĄnitions for notions like potency or strictness. Developer support
for these notions should then be explored. The user interface in our tool USE for model
querying and quality evaluation can be strengthened as well. For instance, one option might
be to highlight the result of meta-level queries in the user class diagram. Another open item
would be to implement a library of pre-deĄned quality assessment properties. With the
integration of three-level modeling in the tool USE, more work on model metrics seems to
be a promising direction for a USE extension. The proposal for level-crossing constraints
must be implemented and extended to cover other formula templates. Last but not least,
complex examples and case studies, especially case studies from large applications, must
check the practicability of the proposal.

References

[Ag11] Aguilera, David; García-Ranea, Raúl; Gómez, Cristina; Olivé, Antoni: An Eclipse Plugin for
Validating Names in UML Conceptual Schemas. In: Proc. ER 2011 Workshops FP-UML,
MoRE-BI, Onto-CoM, SeCoGIS, Variability@ER, WISM. pp. 323Ű327, 2011.

[AG12] Atkinson, Colin; Gerbig, Ralph: Melanie: Multi-level Modeling and Ontology Engineering
Environment. In: Proc. 2nd Int. Master Class MDE: Modeling Wizards, co-located with
MODELS 2012. MWŠ12, pp. 7:1Ű7:2, 2012.

[AGC16] Atkinson, Colin; Grossmann, Georg; Clark, Tony, eds. Proc. 3rd Int. Workshop Multi-Level
Modelling co-located with MoDELS 2016, volume 1722 of CEUR Workshop Proceedings.
CEUR-WS.org, 2016.

[AGO12] Aguilera, David; Gómez, Cristina; Olivé, Antoni: A Method for the DeĄnition and
Treatment of Conceptual Schema Quality Issues. In: Proc. 31st Int. Conf. ER 2012. pp.
501Ű514, 2012.

[AK03] Atkinson, C.; Kuhne, T.: Model-Driven Development: A Metamodeling Foundation. IEEE
Software, 20(5):36Ű41, 2003.

[At14] Atkinson, Colin; Grossmann, Georg; Kühne, Thomas; de Lara, Juan, eds. Proc. 1st Int.
Workshop Multi-Level Modelling co-located with MoDELS 2014, volume 1286 of CEUR
Workshop Proceedings. CEUR-WS.org, 2014.

[At15] Atkinson, Colin; Grossmann, Georg; Kühne, Thomas; de Lara, Juan, eds. Proc. 2nd Int.
Workshop Multi-Level Modelling co-located with MoDELS 2015, volume 1505 of CEUR
Workshop Proceedings. CEUR-WS.org, 2015.

[Bé05] Bézivin, Jean: On the UniĄcation Power of Models. Software & Systems Modeling,
4(2):171Ű188, 2005.

Extending a UML and OCL Tool for Meta-Modeling 149



[BG11] Büttner, Fabian; Gogolla, Martin: Modular Embedding of the Object Constraint Language
into a Programming Language. In: Formal Methods, Foundations and Applications: 14th
Brazilian Symposium. Springer Berlin Heidelberg, pp. 124Ű139, 2011.

[BKK16] Balaban, Mira; Khitron, Igal; Kifer, Michael: Multilevel Modeling and Reasoning with
FOML. In: IEEE Int. Conf. SWSTE. pp. 61Ű70, 2016.

[CG12] Cabot, Jordi; Gogolla, Martin: Object Constraint Language (OCL): A DeĄnitive Guide. In
(Bernardo, Marco; Cortellessa, Vittorio; Pierantonio, Alfonso, eds): Formal Methods for
Model-Driven Engineering, LNCS 7320, pp. 58Ű90. Springer, 2012.

[dLG10] de Lara, Juan; Guerra, Esther: Deep Meta-modelling with MetaDepth. In: Proc. 48th Int.
Conf. TOOLS 2010. pp. 1Ű20, 2010.

[Dr16] Draheim, Dirk: ReĆective Constraint Writing. In: Special Issue on Database- and Expert-
Systems Applications on Transactions on Large-Scale Data- and Knowledge-Centered
Systems XXIV - Volume 9510. Springer-Verlag New York, Inc., pp. 1Ű60, 2016.

[GBR07] Gogolla, Martin; Büttner, Fabian; Richters, Mark: USE: A UML-based SpeciĄcation
Environment for Validating UML and OCL. Sci. Comput. Program., 69(1-3):27Ű34, 2007.

[GH16] Gogolla, Martin; Hilken, Frank: Model Validation and VeriĄcation Options in a Contem-
porary UML and OCL Analysis Tool. In (Oberweis, Andreas; Reussner, Ralf, eds): Proc.
Modellierung (MODELLIERUNGŠ2016). GI, LNI 254, pp. 203Ű218, 2016.

[Go15] Gogolla, Martin: Experimenting with Multi-Level Models in a Two-Level Modeling Tool.
In: Proc. 2nd Int. Workshop Multi-Level Modelling co-located with MoDELS 2015. pp.
3Ű12, 2015.

[IGS14] Igamberdiev, Muzaffar; Grossmann, Georg; Stumptner, Markus: An Implementation of
Multi-Level Modelling in F-Logic. In: Proc. Workshop Multi-Level Modelling co-located
with MoDELS 2014. pp. 33Ű42, 2014.

[LGdL14] López-Fernández, Jesús J.; Guerra, Esther; de Lara, Juan: Assessing the Quality of
Meta-Models. In: Proc. 11th Workshop MoDeVVa@MODELS 2014. pp. 3Ű12, 2014.

[Mi14] Mierlo, Simon Van; Barroca, Bruno; Vangheluwe, Hans; Syriani, Eugene; Kühne, Thomas:
Multi-Level Modelling in the Modelverse. In: Proc. Workshop Multi-Level Modelling
co-located with MoDELS 2014. pp. 83Ű92, 2014.

[Ob06] Object Management Group Ű OMG: . OMG: Object Constraint Language, version 2.0,
2006.

[Ob11] Object Management Group Ű OMG: . OMG UniĄed Modeling Language(OMG UML),
Superstructure, version 2.4.1, 2011.

[Ob15a] Object Management Group Ű OMG: . OMG Meta Object Facility (MOF) Core SpeciĄcation,
version 2.5, 2015.

[Ob15b] Object Management Group Ű OMG: . UniĄed Modeling Language SpeciĄcation, version
2.5, 2015.

150 Khanh-Hoang Doan, Marti Gogolla


