
Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft fr Informatik, Bonn 2016 33

Scaling Size and Parameter Spaces in Variability-aware

Software Performance Models

Matthias Kowal1, Max Tschaikowski2, Mirco Tribastone3, Ina Schaefer4

Abstract: Model-based software performance engineering often requires the analysis of many in-
stances of a model to find optimizations or to do capacity planning. These performance predictions
get increasingly more difficult with larger models due to state space explosion as well as large pa-
rameter spaces since each configuration has its own performance model and must be analyzed in
isolation (product-based (PB) analysis). We propose an efficient family-based (FB) analysis using
UML activity diagrams with performance annotations. The FB analysis enables us to analyze all con-
figurations at once using symbolic computation. Previous work has already shown that a FB analysis
is significant faster than its PB counterpart. This work is an extension of our previous research lifting
several limitations.

1 Coxian Distributions and PB-Evaluation of PAADs
Performance Annotated Activity Diagrams (PAAD) capture the workflow of a software

system and enhance it with performance-related properties [KST14]. An example can be

found in Fig. 1a. Each node represents a service center in the software system, e.g. CPUs,

web server and so forth, and has the following performance annotations at its corners:

vectors for the service time distribution (top left and right values), number of clients at

that node during the initial condition (bottom left) and number of servers (bottom right).

Edges connect the nodes and are annotated with probabilities denoting the likelihood of a

job to take that path. We can construct a continuous-time Markov chain (CTMC), where

the length of either vector denotes the actual number of states in the CTMC (or stages

of the distribution). The left vector provides the rate of the exponential residence time

at each state, while the right vector contains the probability with which a service process

moves from one state to the next. The time between entering the first state and exiting from

any other state gives us a non-exponential distribution for the service at the specific node.

Fig. 1b shows the CTMC for such a Coxian distribution. The services will be exponentially

distributed with 2/6+2/6 = 2/3 in state 1 and enter state 2 with a probability of 1/2 en-

countering an additional delay of 1/3. Coxian distributions provide better representations

of real-world software systems, since they can be seen as a composition of exponential

stages and are able to approximate any given general distribution [St09]. In addition, we

can now simulate parallelism with multiple servers that are available at a node. Both as-

pects remove a restriction of our previous work in [KST14]. The calculation of the steady

state throughput for such Coxian-distributed multi-server nodes is a non-trivial task that

involves solving the system of Ordinary Differential Equations (ODE) given by RT T = T .

R is the routing probability matrix and T determines the ODE throughputs. In the PB anal-

ysis, we have to solve it for each variant in isolation, which is inefficient. Mean service

times as well as number of servers and clients also play role in the calculation of T , but

their relation to the ODE system is omitted here.

1 Technische Universität Braunschweig, Germany
2 IMT Institute for Advanced Studies Lucca, Italy
3 IMT Institute for Advanced Studies Lucca, Italy
4 Technische Universität Braunschweig, Germany

34 Matthias Kowal et al.

2

1

3

5

(½,1)

1.0

1.0

0.7

0.3

(2,1)

1

3

2

120

0

0

0

(1,½)

(⅔,⅓)

(½,1)

(½,1)

(½,1)

4

0

(½,¼) (½,1)

2

1.0

0.5

0.5

(,)2
5
1
5

Routing

Probability

#-Clients

#-Servers

Service Time

Distribution

(a) A Performance Annotated Activity Diagram

1 2
2/6

2/6

1/3

(b) Coxian CTMC for node 3.

Figure 1: Running Example

2 Variability and FB-Evaluation

A FB analysis is only reasonable if variability is included into the PAADs. Similar to

our previous work, we applied the principle of delta modeling (DM) in which deltas can

add, remove or modify PAAD elements. Given a specific core PAAD, we can generate any

variant of the system by applying the respective deltas [Sc10]. The FB analysis relies on

the construction of a 150%-model or super-variant. This model is built by merging the

core and all deltas into one large model. Each PAAD element that is changed by a delta

is represented as a symbol in the 150%-model and not its concrete value, e.g. removing

the edge between node 3 and 5 would modify the probability between node 3 and 4 to 1.0

(cf. Fig. 1a) and result in two symbolic parameters in R. Again, we can construct the ODE

system, but solve it symbolically this time, which has to be done just once. The steady state

throughputs T are now calculated by plugging the concrete values for the desired variant

into the parametrized expressions. The FB analysis is faster compared to the PB one and

gets even more efficient for larger networks or an increasing number of variants.

References

[KST14] Kowal, Matthias; Schaefer, Ina; Tribastone, Mirco: Family-Based Performance Analysis
of Variant-Rich Software Systems. In: FASE 2014. pp. 94–108, 2014.

[Sc10] Schaefer, Ina: Variability Modelling for Model-Driven Development of Software Product
Lines. In: VaMoS. pp. 85–92, 2010.

[St09] Stewart, William J.: Probability, Markov Chains, Queues, and Simulation. Princeton Uni-
versity Press, 2009.

