
Measuring Component Performance

Using A Systematic Approach and Environment

Jerry Gao, Ph.D., Chandra S. Ravi, and Espinoza Raquel
San Jose State University, email: gaojerry@email.sjsu.edu

Abstract: As more third-party software components are available in the
commercial market, more people begin to use the component-based software
engineering approach to developing component-based programs. Since most e-
business and e-commerce application systems are net-centered distributed systems,
customers usually have very restricted system performance requirements. Hence,
performance testing and evaluation of software components becomes a critical task
for component-based software. Although a lot of research efforts have been
devoted to analysis and design methods of component-based software, only a few

research papers address the issues and systematic solutions to performance testing
and measurement for modern components. This paper proposes a systematic
solution and environment to support performance measurement for software
components. The objective is to provide a plug-in-and-measure approach to
evaluate component performance, including functional speed, throughput,
availability, reliability and resource utilization. It reports the development effort on
constructing a distributed performance evaluation environment for software
components based on a set of well-defined performance evaluation metrics and

techniques. In addition, some application examples and case study results are
reported.

Keywords: Component-based software engineering, performance measurement,
performance metrics, performance evaluation, and software component evaluation
environment.

1 Introduction

Widespread development and reuse of software components has been regarded as one of
the next biggest phenomena for software industry. As more third-party software
components become available in the commercial market, more people begin to use the

component-based software engineering approach to developing component-based

programs. Today most e-business and e-commerce application systems are net-centered
distributed systems, customers usually have very restricted system performance

requirements. System performance testing and evaluation therefore becomes critical in

quality validation. Since component-based software performance is dependent on the

performance of involved components, component performance evaluation becomes a
critical task for component-based software projects. Although recently there are many

technical papers addressing issues and solutions in analysis and design methods of

component-based software, only a few published papers focus on performance testing
and measurement issues for components and component-based software [3][4][7][10].

77

In the past decades, a lot of research efforts have been devoted to program performance

evaluation and analysis in a black-box approach. Many published articles proposed

performance evaluation metrics focusing on different aspects of system performance,

such as speed, latency, throughput, load boundary, reliability, availability, and scalability
[1][2][4][7][8][9][10][11][13][14]. There are a number of papers discussing performance
evaluation models for conventional software systems [2][7][10][11][15]. In addition,

there are a few papers addressing the systematic performance evaluation for software

systems [13][14]. However, most existing work only address performance evaluation
and measurement at the system level using a black-box approach, in which the system is

considered the black-box, and performance evaluation is measured in a black box. view.

Hence, component performance evaluation is not emphasized and component
performance data is not collected. As pointed by Jerry Gao et al in [6], this traditional

performance evaluation approach is not good enough for component-based software

engineering because it is very difficult for engineers to isolate and discover components

that causes system performance issues. He points out two reasons:

• Component performance validation for third party components must be performed

prior to their use. Since most reused components are not developed to facilitate
component performance validation and measurement, it is impossible to insert
component performance probes inside commercial components. It is, therefore,

costly to collect and conduct performance testing and measurement for components

and component-based programs.

• Since component-based software systems are constructed based on third party

and/or in-house build components, component-based software performance is

dependent on the performance of involved components. This suggests that system

level performance evaluation must be performed in a gray-box approach based on
involved components so that any component performance issues in a targeted

context and environment could be easily detected and isolated whenever a system

performance issue is discovered.

In the real world, engineers encountered a number of issues relating performance evaluation

for components and component-based software:

• It is not easy to understand component performance due to the lack of component
performance reports and evaluation data for reusable components, including COTS

components.

• It is very hard to detect and isolate performance problems for components in
component-based software due to the lack of component-based software

performance evaluation models and systematic solutions.

• It is very difficult to evaluate the performance of third party (or in-house)

components in a targeted reuse context environment because they are not
constructed to facilitate component performance evaluation.

• It is very costly to measure component performance in a reuse context due to the

lack of performance evaluation tools that provides engineers a plug-in-and-measure
environment.

As pointed out by Jerry Gao et al. [5][6], today engineers also have encountered a

number of challenges in performance testing and measurement of component-based
software:

78

• How to define and select component-based performance evaluation models and

measurement metrics?

• How to establish a product-oriented or enterprise-oriented performance testing and

evaluation environment for component-based software in a rational way?

• How to collect and monitor component performance data with minimum cost and

overhead?

This paper proposes a systematic solution and environment to support the performance

measurement for software components. The objective is to provide a plug-in-and-
measure approach to evaluate component performance, including functional speed,

throughput, availability, reliability and resource utilization. It reports the development

effort of a distributed performance evaluation environment for software components

based on a set of well-defined performance evaluation metrics and techniques. In
addition, some application examples and case study results are reported. The structure of

the paper is organized as follows. Section 2 reviews software performance metrics and
discusses three special performance metrics for components. Section 3 proposes a

systematic solution and environment to measure software component performance based
on a set of well-defined metrics. Section 4 discusses the performance tracking and

collection techniques. Section 5 reports our application example with a simple case

study. Finally, the conclusion remarks are given in Section 6.

2 Understanding of Software Performance Testing and Evaluation

System performance testing and evaluation refers to testing activities and evaluation

efforts on validating system performance and measuring system capacity. Today,

performance testing and evaluation is a very critical step in a software testing and quality
control process. It has three major objectives. The first is to confirm that the specified

system performance requirements for a given product are satisfied. The second is to find

out the product capacity in system performance to answer the expected questions from

marking people and customers. The third is to discover the performance issues, such as
performance degradation, performance improvements, and performance bottlenecks, in
the given product release to help the development teams to identify of their causes.

Good performance testing and evaluation results provide solid system and component

performance data to marketing people and customers concerning the product capacity of

each system configuration. Engineers not only need performance data and reporting for

the system but also its components, including functional processing time, throughput,
availability, reliability, and scalability. Typical performance metrics are given as

follows:

• Processing time: Validate the processing time at the component-level and system-
level including the maximum, minimum, and average response time.

• Throughput: Checking system throughput enables us to understand various system
throughputs in network communication, application processing, functional tasking,
and business transaction. For a component-based application system, attention is

paid to the minimum, average, and maximum system throughputs at the component-

level and system level for each type of media inputs. The focus here is to determine

79

how much input have been processed successfully, and how much inputs have not

been processed or abandoned.

• Availability: Checking component availability allows us to see the degree of

component availability in the aspects of network, computer hardware & software,
and application functions and services. For a component-based application system,
it is important to evaluate the availability of the given system and its components

during the given performance testing time period.

• Reliability: Checking component reliability allows us to determine how reliable a

given component is in a given system environment with the specified system loads

during a test period. For a component-based application system, it is important to

evaluate the reliability of system components and system in a whole during the
given performance testing time period.

• Scalability: Checking component scalability helps test engineers to determine how

well a given component can be scaled-up on network traffic, server load and
throughput, data and transaction volumes, application processing capability, and the

supporting number of clients and concurrent users. To do this, we need to check the
speed-up and threshold on component performance, and the component capacity

threshold and improvement on component load and throughput.

The detailed common performance metrics applicable to modern components are given

in [6]. The rest of this section discusses three special component metrics. They are
component throughput, reliability, and availability metrics.

2.1 Throughput Metrics

Throughput metrics usually is developed to measure the successful rate of a software

component to process incoming events, messages, and transaction requests in a given

timeline. For example, we can define a transaction-oriented throughput metric for
software components as follows:

Definition: The transaction throughput of a component Ck for transaction type TR

in a given performance test period Tp is equal to m, where m is total number of
successfully processed transaction requests. The formal metric is given below.

Throughput(Ck, Tp, TR) = m

During component performance testing and evaluation, engineers may apply a number of test
sets to find out the maximum, minimum, and average transaction throughput for each type of

transactions. Using the transaction throughput of components, we can define transaction
throughput rate below.

Definition: The transaction throughput rate of a component Ck for transaction
type TR during a given performance test period Tp is the ratio of m, the total

number of successfully processed transaction requests to n, the total number of

received transaction requests. The formal metric is given below.

Throughput-Rate(Ck, Tp, TR) = m / n

80

When the throughput rate reaches 1, component Ck has the highest successful rate in

processing transaction requests in TR category. Based on the same idea described here,

other throughput metrics can be defined to evaluate the processing rate of incoming

events and messages for software components.

2.2 Availability Metrics

Availability metrics is a standard metric for system performance measurement.

According to [10], it is defined as the ratio of system uptime to the total system

evaluation time, including system uptime and downtime. Based on this, system

unavailability can be defined as 1 – availability. Therefore, system availability can be
formally defined as follows:

system_availability = system_uptime / system_evaluation_time

Clearly, this metric is very simple and easily understandable. It can be applied to

measure component availability because each component can be considered as a black

box. However, evaluating component availability with this metric has several problems.

They are summarized as follows:

• This metric cannot provide the detailed indications between the component

availability and component supporting functions. Therefore, it is not useful for

performance problem analysis, tuning and debugging.

• This availability metric is not applicable to software components with the fault-

tolerant features. Today, many software application systems, such as web-based

information systems, e-commerce systems, and defense systems, require high-

availability components. How to measure their availability is a challenging issue for
engineers.

• It is not easy for engineers to measure and monitor software component availability

for a distributed component-based system unless some systematic solution is in
place.

Here we propose two the component availability metrics to address the first two

problems described above.

A) Function-Based Component Availability

Function-based component availability measures a component's availability based on its
availability of supporting its system functions.

Definition: The function-based availability of a component Ck in a system S

refers to the ratio of its total available time TA of supporting its system function
feature Fj to the performance test period Tp, including both available and

unavailable time to support function Fj. The formal metric is given below.

FComponent Availability (Ck, S, Tp) = TA (Ck, Fj) / Tp

Like the standard availability metric, this definition is simple and straightforward.

Unlike the standard availability metric, this metric focuses on the component availability
of supporting a specific system function. This metric has two advantages. First, it is easy

81

to measure, and its measurement results are useful for performance problem detection,

analysis, and tuning. Second, it is easy to isolate and identify the availability problems at

the component-level availability during performance testing and measurement at the

system level.

B) High Availability (HA) of Components

To measure components with high availability requirements, we must define a metric to
evaluate high availability of components. To achieve this goal, we first need to

understand what is a highly available component.

Definition: A high available component is an N-Cluster, in which N redundant
components are actively running at the same time to support and deliver the

same set of functional features as a black box.

Let’s assume that CHA = {C0, C1,…,CN } is a cluster of N redundant components. Assume
that there is a consistent mechanism to collect the perform results on component

availability for each internal component. The high availability of an N-cluster
component CHA in a system S during the performance evaluation time Tp is computed as
follows.

Component-High-Availability (CHA, , S, Tp)

= Havailable-time(CHA) / [Havailable-time (CHA) + Hunavailable-time (CHA)]

Havailable-time (CHA) can be computed based on a set of available time slots { T1 (HA),,

T2 (HA) , … Tm (HA) } for CHA during the performance evaluation time Tp, where Tj (HA)

refers to a time slot in which at least one component in CHA is active and available to

deliver all functions. Similarly we can define Hunavailable-time (CHA) where {T’1 (HA),,

T’2 (HA), … T’n (HA)} refer to the time slots in which all components in CHA are not

available to support and deliver their functions.

Havailable-time(CHA) = Σ j = 1 to m Tj (HA)

Hunavailable-time(CHA) = Σ j = 1 to n T'j (HA)

Figure 2.1 shows an example of a 3-cluster HA component and its available and

unavailable time.

Fig. 2.1: 3-cluster HA Component Available and Unavailable Time

Tp

C1

Unavailable Time Slot for C1

C2

C3

Available Tim Slot for C1

Unavailable Time Slot for CHA Available Time Slot for CHA

82

2.3 Component Reliability

Although many different approaches and metrics have been proposed to measure system
reliability, the common way is to evaluate the system reliability based on its reliability of
service, in which a function R(t) is used to present the probability that service survives

until time t. The reliability of the service is often characterized by specifying mean time

to failure (MTTF) or mean time between failures (MTBF). In the computation of the
MTTF or the MTBF, it is usually assumed that the exponential distribution best

describes the possible occurrence of failures in the service. For different application

systems, the reliability of service should be checked to make sure that the above

definition is good enough to adequately support the evaluation of system reliability in a
given application domain.

When we consider software components as a black box, many system-level reliability
evaluation methods are applicable. Here, we define component reliability based on

component uptime and downtime for services during a performance testing and

evaluation time.

Definition: The component reliability of a component Ck in a system during a
time period T refers to the ratio of the total uptime of the component to the total

time, including both available and unavailable time.

Based on this definition, component reliability can be evaluated easily if there is a
systematic way in place to track component uptime and downtime. Let’s assume that Ck

is a non-HA component, and its component availability during time period T can be

computed as follows, where Tp stands for the total performance evaluation time, and up-

time(Ck) represents the up time of Ck during Tp.

Component-Reliability T (Ck) = up-time(Ck) / Tp

For HA components, such as N+1-Clusters, we need a different metric to evaluate their
reliability. The major question here is to show to evaluate the uptime and downtime of a

HA component CHA with N+1 redundant components. Here, two different methods are

given. Figure 2.2 shows the difference between these two approaches.

Fig. 2.2: Comparison of Two Approaches for Component Reliability

Tp

C1

Down-Time Slot for C1

C2

C3

Up-Time Slot for C1

Down-Time Slot for CHA Up-Time Slot for CHA

Tp

C1

Down-Time Slot for C1

C2

Up-Time Slot for C1

Down-Time Slot for CHA Up-Time Slot for CHA

(A) Based on Single Failure Criterion (B) Based on Service Availability

83

The first approach is based on the single failure criterion, that is, any component of a HA

component having a failure of service will be considered as a HA component's failure.

Therefore, the reliability of a HA component Cha can be easily computed as follows,

where up-time(Cha) represents the up time of Cha during time period T, and down-

time(Cha) includes the down time and recovery time of Cha.

Component-Reliability T (Cha) = up-time(Cha) / (up-time(Cha) + down-time(Cha))

= up-time(Cha) / |T|

To compute down-time(Cha) let’s assume that Cha = { Cha1, …, ChaN } is N+1 HA

component. Thai = {T(hai, j) | j = 1,…,m } is the set of downtime slots for Chai in T.

down-time(Cha) = Σi down-time(Chai) = Σi Σj T(hai, j) (j=1,.., m, i=1,…, N)

Notice that the Σ operation here represents the summation of all time slots by ignoring
their overlapping time. The up-time(Cha) can be expressed in terms of down-time(Cha).

up-time(Cha) = |T| - down-time(Cha)

The second approach evaluates the reliability of a HA component based on its service

availability. Here, a failure of service for a HA component in a given time slot suggests

that all components in a HA component Cha have a failure of service in the same time
slot. This implies that this approach uses a different way to compute up-time(Cha) for a

HA component with N+1 redundant components. Let’s assume that Cha = { Cha1, …,

ChaN } is N+1 HA component. T’hai = {T’(hai, j) | j = 1,…,m } is the set of uptime slots for

Chai in T. Then, up-time(Cha) for Cha is given below.

up-time(Cha) = Σi up-time(Chai) = Σi Σj T’(hai, j) (j=1,…., m, i=1, …, N)

Notice that the Σ operation here represents the summation of all time slots by ignoring

their overlapping time.

3 A Systematic Performance Evaluation Solution for Software

Components

This section reports a systematic solution to support component performance measurement in

a distributed environment. This solution is useful for component vendors to test and measure

component performance, as well as for component users to validate component performance
in component-based software using a client-server setting. The major objectives of this

solution are as follows:

• Provide a common framework to support component performance testing and
measurement. With this framework, engineers can convert software components to
facilitate component performance evaluation with a consistent interface.

• Provide a consistent evaluation environment and mechanisms to measure

component performance in a plug-in-and-measure approach.

• Provide a scalable, distributed performance evaluation environment that supports

performance evaluation of components on any computer node over a network.

84

The solution consists of the three major parts:

• Component Performance Evaluation Library: The well-defined component

performance evaluation library allows for constructing (or converting) conventional

components into measurable components with consistent interfaces for performance
evaluation.

• Systematic Performance Evaluation Environment: This environment is

developed based on a set of well-defined component performance metrics, and
performance tracking techniques.

• Performance Tracking Methods and Formats: Well-defined performance

tracking methods and formats are useful to develop consistent performance tracking
and evaluation mechanisms for software components.

3.1 Component Performance Evaluation Library

The component performance library is developed to provide engineers with a standard

performance evaluation framework to support performance testing and measurement of
software components and component-based programs. This library enables component

developers to construct measurable components that facilitate performance measurement
and to convert third-party components into measurable component by adding a

consistent performance wrapper. The library provides two general functions for each

software component:

• Generate and collect different types of component performance traces using well-

defined trace formats, and place them into a performance message queue.

• Compute component performance measures based on a set of pre-defined
performance metrics.

Currently, the component performance evaluation library includes a super-class (known

as performance class) and six derived classes. They are used for the measurement of
component speed, resource utilization, transaction throughput, reliability, availability,

and scalability. Another class supports the processing of performance message queues.

They have been implemented as a component performance library based on the
component performance metrics given in [6]. The details of this library as reported in

[11].

3.2 Distributed Component Performance Evaluation

Figure 3.1(a) displays the system infrastructure of a distributed component performance

measurement environment. It supports performance testing and evaluation of software

components and consists of a performance test and evaluation server, a number of
performance agents, and a performance library within a client-server environment.

• Performance Test and Evaluation Server: The performance test and evaluation

server manages and controls a central performance repository that stores various
types of component performance trace records and evaluation results. The

performance test server plays a control and management role in supporting

performance trace collection, performance analysis and computing, as well as

performance monitoring and reporting. The other function of the performance test
server is to allow testers to control and configure performance tracking and testing

85

features by communicating with performance agents on different computing stations

over the network. Figure 3.1(c) shows the components of a performance test server.

Through the GUI interface, engineers can communicate with performance agents on

different computing stations to monitor the current component performance, query
the agent status, and configure performance-tracking properties. The component
performance analysis module analyzes and reports component performance in a

graphic format.

Fig. 3.1: Distributed Component Performance Evaluation Environment

• Performance Agent: On each network node (say a computer station), there is a
performance agent that interacts with measurable software components through a
dedicated performance message queue. It collects component performance data, and

transfers them to the performance test server over the network using dynamic

performance messages. The other function of a performance agent is to allow
engineers to configure and set-up the required performance tracking and monitoring

features by communicating with the performance test server. Figure 3.1(b) displays

the detailed modular structure of a performance agent.

• Performance Library: The performance library is a well-defined class library that

provides component developers and component users a standard component

performance framework. This framework contains a set of well-defined performance

tracking and analysis classes that support performance measurement of speed,
throughput, resource utilization, availability, reliability, and scalability.

Performance

Server

Message Queue

Component Performance Agent

Component

Performance

Library

Components

Computer Node

Computer Node

Network

Agent Registration

Message Processor

Comm. Interface to
Performance Server

Queue Message
Processor

(a) Performance Client-Server Structure (b) Performance Agent Structure

Administration

& Configuration

Performance

Monitor

Performance DB

Access Program

GUI of the Performance Server

Communication Interface to Performance Agents Component

Performance

Repository

Performance

Report & Analysis

Performance

Metrics
Performance Server Controller

(c) Performance Server Structure

86

On each computing station over a network, there are two pre-defined performance

tracking message queues. One is used to manage and control the performance tracking

messages from different components to the performance library. And the other is used to

manage and control the performance tracking messages from the performance library to
a performance agent. The collected performance data is recorded in a repository at the
server side.

4 Performance Tracking Techniques

Program tracking is one of important technique for program testing and performance
evaluation [6]. Performance tracking is needed to support performance testing and
evaluation. Its major purpose is to help engineers collect, track, and monitor component

and system performance data. Two different performance-tracking techniques are being

used. They are known as time-based performance tracking, and volume-based
performance tracking. Both methods could be implemented manually or systematically.

Here, we only highlight the general idea. The details can be found in the technical report

[11].

A) Time-Based Performance Tracking

The focus of this method is to collect and track the component functional speed. The
basic idea is to provide engineers with a set of pre-defined speed measurement functions
as a part of the performance library. It enables engineers to track and analyze the

processing speed from point A to point B on a program control flow inside software
components. For instance, to monitor the execution time of a component's function,

engineers can insert the time-based performance tracking code at the beginning and end

point of a component function in a manual (or systematical) manner. The performance

library computes the function execution time based on the collected speed performance
traces. Typical applications of time-based performance tracking are listed below.

• Create a driver program by wrapping a component function call to check its

execution speed.

• Check the execution time of a loop or a block of sequential statements in a

component.

• Check the execution time of a functional transaction in components.

• Check the waiting-time for receiving a message or/and processing-time of received

messages.

In addition, the tracking code can be used in any program code block, loops, repeatable
logic, transaction sequences and functional scenarios in component-based programs.

Based on time-based performance traces, the performance library computes the

max/min/average processing time for a specific operation, function, or task in a
component. The detailed description of this method and its implementation can be found

in [11]. Figure 4.1(a) illustrates a simple example about how to add performance-

tracking code to measure a component functional speed. As shown in the example, only

three lines of sources are needed to insert into an original component function. Similarly,
we can create a simple performance driver by wrapping a component function call to

measure its execution speed.

87

B) Volume-Based Performance Tracking

The time-based performance tracking method is not suitable for stress and load testing
due to its high system overhead because it generates performance traces whenever a
component (or a program) exercised the inserted performance tracking code. To support

performance measurement during load and stress testing, as well as component

reliability and availability evaluation, the volume-based performance tracking method is
developed. Unlike time-based performance tracking, where the focus is to monitor the

processing time of component functions and operations, volume-based performance

tracking focuses on measuring various throughputs in a system and its components. The
typical examples are the throughputs of event/transaction/message processed in a

component. This method is designed to evaluate component and system performance

throughput, and support the measurement of component availability and reliability.

Its basic idea is to insert pre-defined program throughput tracking code into software

components to collect and generate throughput performance traces based on a pre-
defined time interval. During the execution of a component (or system), the volume-
based performance tracking code counts the occurrence of a targeted

event/transaction/message / operation in a component, and generates performance traces

based on a specified time interval. The detailed descriptions about this method and its

implementation could be found in [11]. Figure 4.1(b) illustrates a simple example to
show how to add performance-tracking code for throughput measurement based on the

given component performance library.

Fig 4.1: Sample Insertion of Performance Tracking Code

Performance testing engineers can use these methods to measure the occurrences of the

incoming events (or messages) and outgoing events (or messages) of a component in a

import PlibSpeed;

public class PerfSpeedComponent {

public PerfSpeedComponent() {}

:

public void function() {

:

// Instantiate Speed class from library

PlibSpeed ps = new PlibSpeed(PerformanceType,

Component_id, User_Tag, Unit);

 ps.start(); // mark the start time

// original function body

ps.stop(); // mark the end time

}

}

import PlibThroughput;

public class PerfThroughputComponent {

public PerfThroughputComponent() {}

:

public void function() {

:

// Instantiate Throughput class from library

PlibThroughput pt = new PlibThroughput(

PerformanceType, Component_id, User_Tag,

Begin_Time, End_Time, Unit);

while (current_time < end_time)

{

// original function body

// Library counts each call within test interval

pt.event();

// update current time

current_time = new Date().getTime();

}

}

}

(a) Time-Based Tracking Example (b) Volume-Based Tracking Example

88

specific time slot. The performance data provides the information to compute the available-

time and unavailable-time for component availability, and the uptime and downtime for

component reliability. To support the transfer of component performance trace data, we have

defined a consistent performance trace format to support six types of performance trace
messages for component speed, throughput, reliability, availability, and system utilization
respectively. Figure 4.2 shows their detailed formats. They have been used in the

implementation to support the communications between the performance agents and the

performance server in a distributed client-server environment. The detailed can be found in
[11].

5 Application Examples and Case Study

Currently, we are working on a detailed case study to verify and validate this systematic

solution and framework. Due to the limited space of this paper, we only report one
application example and its related results in this section. A simple component-based

application program, known as Stock Watcher, over a distributed environment, is

selected as our experimental example. It was developed for the simulation of a stock
watcher in which the stock watcher component is displaying stock price of a particular

company. The stock watcher component is communicating with the stock server to
update the stock price on the display. The application consists of two parts, a client and a

stock server. Each includes a number of components.

Fig. 5.1 Configuration Screen for Performance Tracking

Agent

ID

Node

ID

Trace Type Comp

ID

Begin

Time

End

Time

Trace MessageUser Tag

Fig. 4.2. Performance Trace Message Format

89

Fig. 5.2: Monitor Screen for Component Performance

Fig. 5.3: Detailed Report Screen for Component Performance Results

Figure 5.1shows the GUI interface that allows engineers to configure performance-

tracking features at the performance server. Figure 5.2 shows GUI interface supporting

90

performance monitoring, and Figure 5.3 shows the GUI interface for performance

reporting and analysis. Due to the limited scope of this paper, we only list three selected

performance results based on our case study of the Stock Watcher program. Based on

our application experience and case study, we found that the component performance
framework and evaluation environment does provide a systematic solution to support
performance evaluation of software components in a distributed environment. It has

good potential to provide a systematic performance testing and evaluation for in-house

built and third party components using a plug-in-and-measure approach. To achieve this
goal, we have two tasks:

• Come out systematic solutions to construct measurable components. Now we create

them manually in a systematic framework approach. Future, we will report how to
construct measurable components later.

• Minimize and control the system overheads caused by performance tracking and

evaluation during system execution.
Table 5.1 indicates that the performance-tracking overhead on CPU is very small and

acceptable no matter the size of involved components. It also indicates that our current
solution requires a minimal programming effort from engineers to work with the

performance framework. We can insert the built-in tracking code either manually or
systematically using a component wrapper approach.

Type

Avg PT w/o

Tracking Code

(milliseconds)

Avg PT with

Tracking Code

(milliseconds)

CPU Overhead

(milliseconds)

Effort in inserting

lines of tracking code

Speed 22 24 2 < 5

Throughput 10004.2 10004.4 0.2 5 to 10

Reliability 10004.6 10008.6 4 5 to 10

Availability 10036.6 10038 1.4 5 to 10

Resource

Utilization

24.2 30 5.8 < 5

Table 5.1: System Overhead for Performance Tracking Code

6 Conclusions and Future Work

In this paper, we propose a systematic solution to measure component performance in a
distributed environment based on a set of well-defined performance evaluation metrics

and framework. Its major objective is to allow engineers use a standardized performance
evaluation bed to measure component performance in a plug-in-and-measure approach.

Its focus is to solve the addressed performance evaluation problems for components in
component-based software development projects. In addition, we reported our design

and implementation of a distributed component evaluation environment and framework,

including its system architecture, framework, and related techniques in performance
tracking and data collection. Based on our application experience, the solution is not

only feasible and useful to support performance evaluation of homegrown components,

but also demonstrate its potential value in supporting performance measurement of third-

party components after converting them into measurable components. Currently, we are
working on a number case study to evaluate and validate our solution and framework.

We are also investigating new systematic solutions to measure the performance of

component-based systems, and new methods to construct measurable components.

91

References

(1) [CML00]
(2) [Ch80]
(3) [DBB96]
(4) [Ga00]
(5) [Ga01]
(6) [GTW03]
(7) [JW00]
(8) [LK96]
(9) [KM97]
(10) [Va97]
(11) [RH02]
(12) [RP00]
(13) [SS00]
(14) [Ti95]

Bibliography

[CML00] Cahoon, B.; Mckinley, K.; Lu, Z.: Evaluating the Performance of Distributed
Architectures for Information Retrieval Using a Variety of Workloads: ACM
Transactions on Information Systems, January 2000; Vol. 18, No. 1, pp. 1-43.

[Ch80] Cheung, R.: A User-Oriented Software Reliability Model: IEEE Transitions on
Software Engineering, March 1980, Vol. 6, No. 2, p. 118.

[DBB96] Dini, P.; Bochmann, G.; Boutaba, B.: Performance Evaluation for Distributed System
Components: Proc. 2nd IEEE International Workshop on Systems Management, 1996.

[Ev99] Everett, W.: Software Component Reliability Analysis: IEEE Symposium on
Application - Specific Systems and Software Engineering & Technology, 1999.

[Ga00] Gao, J.: Challenges and Problems in Testing Software Components: Proc. 3rd of
ICSE2000's International Workshop on Component-based Software Engineering -
Reflects and Practice, Limerick, Ireland, June 2000.

[Ga01] Gao, J.: Tracking Software Components: Journal of Object-Oriented Programming,
August/September 2001.

[GTW03] Gao, J.; Tsao, J.; Wu, Y.: Testing and Quality Assurance for Component-Based
Software. Artech House Inc., September 2003.

[JW00] Jogalekar, P.; Woodside, M.: Evaluating the Scalability of Distributed Systems: IEEE
Transactions on Parallel and Distributed Systems, June 2000, Vol.11, No.6, pp.589-
603.

[LK96] Laprie, J.; Kanoun, K.: Software Reliability and System Reliability - Handbook of
Software Reliability Engineering. McGraw-Hill, New York, 1996.

[KM97] Krishnamurthy, S.; Mathur, A.: On the Estimation of Reliability of a Software System
Using Reliabilities of its Components: IEEE The Ninth International Symposium on
Software Reliability Engineering, Albuquerque, NM, November 02 - 05, 1997, p.146.

[Va97] Varsha, M.: Availability Analysis of Transaction Processing Systems based on User-
Perceived Performance: IEEE 16th Symposium on Reliable Distributed Systems,
Durham, NC, October 1997, p.10.

[RH02] Ravi, C.; Houng, D.: A Distributed Performance Measurement Framework for
Software Components. Master Project Report, San Jose State University, Dec. 2002.

[RP00] Rudolf, A.; Pirker, R.: E-Business Testing: User Perceptions and Performance Issues:
The First Asia-Pacific Conference on Quality Software, October 2000.

[SS00] Subraya, B.; Subrahmanya, S.: Object driven Performance Testing of Web
Applications: The First Asia-Pacific Conference on Quality Software, October 2000.

[Ti95] Tian, J.: Integrating Time Domain and Input Domain Analyses of Software Reliability
Using Tree-Based Models: IEEE Transactions on Software Engineering, December
1995, Vol. 21, No. 12, pp. 945-958.

92

