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Abstract: We introduce a new representation for monitored behavior of malicious
software called Malware Instruction Set (MIST). The representation is optimized for
effective and efficient analysis of behavior using data mining and machine learning
techniques. It can be obtained automatically during analysis of malware with a be-
havior monitoring tool or by converting existing behavior reports. The representation
is not restricted to a particular monitoring tool and thus can also be used as a meta
language to unify behavior reports of different sources.

1 Introduction

The field of malicious software (malware) is one of the most active and also one of the
most challenging areas of computer security. In recent years, we are observing a huge in-
crease in the number of malware samples collected by anti-virus vendors [Mic09, Sym09].
Therefore, it is mandatory that we develop tools and techniques to analyze malware sam-
ples with no or very limited human interaction.

Typically, we distinguish between static and dynamic malware analysis as well as, in the
field of the latter one, also between code and behavior analysis. Code analysis can be
performed in a static way by using a disassembler or decompiler and also dynamically
by the usage of a debugger. The main advantage of code analysis is that we can obtain
a complete overview of what a given software does. However, code analysis is often
obstructed by evasion techniques, such as binary packers, polymorphism and anti-debug
techniques [LD03, MKK07, PDA07]. In behavior analysis, the malware is seen as a black
box and only its effects to the system, its behavior, is analyzed. This can be achieved
by several existing monitoring tools. Most of these tools monitor one specific group of
operation, e.g. registry or filesystem accesses. But there are also comprehensive analysis
suites, which perform an overall monitoring of all of the malware’s operations [BMKK06,
SBY+08, WHF07]. These suites execute a malware sample in a controlled environment
and record all system-level behavior by monitoring the performed system calls. As a
result, an analysis report is created summarizing the observed behavior of the sample. In
contrast to code analysis, behavior-based dynamic analysis suffers less from evasion and



obfuscation techniques, as the code is not examined at all. Of course, there are different
techniques, which can be used to prevent or falsify behavior analysis [SLJL08].

To handle the increasing amount and diversity of malware, dynamic analysis can be com-
bined with clustering and classification algorithms. A behavior-based clustering of mal-
ware helps to find new malware families. Tagging new families at an early stage is es-
sential to effectually fight them. Unlike clustering, the classification of malware does not
provide information about new families, but helps to assign unknown malware to known
families. Thus, classification of malware filters unknown samples and thereby reduces the
costs of analysis. This combination of dynamic analysis and machine learning techniques
has been recently studied in different scenarios (e.g., [BOA+07, BCH+09, KM06, LM06,
RHW+08]).

For effective and efficient analysis, however, algorithms and data representations need
to be adjusted to each other, such that discriminative patterns in data are accessible to
learning methods. In this paper, we introduce a new behavior representation—the Malware
Instruction Set (MIST)—which is exclusively designed for efficacy of analysis using data
mining and machine learning techniques. It can be obtained automatically during analysis
of malware with a behavior monitoring analysis tool or by converting existing behavior
reports. The representation is not restricted to a particular report layout and thus can also
be used as a meta language to unify behavior reports of different sources. Empirically, we
demonstrate the accurate representation of behavior realized by MIST, while significantly
reducing the size of reports and stored instructions.

This paper is organized as follows: the Malware Instruction Set is introduced in Section 2.
In Section 3 we present a short empirical evaluation of MIST and demonstrate its capabil-
ities. Finally, we conclude this paper in Section 4.

2 The Malware Instruction Set

The majority of monitoring suites, such as Anubis [BMKK06] and CWSandbox [WHF07],
employ textual or XML-based formats to store the monitored behavior of malware. While
such formats are suitable for a human analyst, they are inappropriate for further auto-
matic analysis. The structured and often aggregated reports hinder application of machine
learning. On the one hand, the XML representations are often too rich, providing an over-
specific view on behavior which is not appropriate for finding generic behavioral patterns.
On the other hand, textual formats are too coarse due to aggregation and simplification,
such that involved patterns of behavior are not visible. Moreover, the complexity of tex-
tual representations increases the size of reports and thus negatively impacts run-time of
analysis.

To address this problem and optimize processing of reports, we propose a special repre-
sentation of behavior denoted as Malware Instruction Set (MIST) inspired from instruction
sets used in processor design. In contrast to textual and XML-based formats, the monitored
behavior of a malware binary is described as a sequence of instructions, where individual
execution flows of threads and processes are grouped in a single, sequential report. Each
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instruction in this format encodes one monitored system call and its arguments using short
numeric identifiers, such as ‘03 05’ for the system call ‘move file’. The system
call arguments are arranged in different levels of blocks, reflecting behavior with different
degree of granularity. We denote these levels as MIST levels. Moreover, variable-length ar-
guments, such as file and mutex names, are represented by index numbers, where a global
mapping table is used to translate between the original contents and the index numbers.

CATEGORY OPERATION | ARGBLOCK1 | ARGBLOCK2 | ... | ARGBLOCKN

Level 1
Level 2

Level 3

Figure 1: Schematic depiction of a MIST instruction. The field CATEGORY encodes the category
of system calls where the field OPERATION reflects a particular system call. Arguments are repre-
sented as ARGBLOCKs.

Figure 1 shows the basic structure of a MIST instruction. The first level of the instructions
corresponds to the category and name of a monitored system call. For example, ‘03
05’ corresponds to the category filesystem (03) and the system call ‘move file’
(05). The following levels of the instruction contain different blocks of arguments, where
the specificity of the blocks increases from left to right. The main idea underlying this
rearrangement is to move “noisy” elements, such as temporary filenames, to the end of
an instruction, whereas stable and discriminative patterns, such as directory and mutex
names, are kept at the beginning. Thus, the granularity of behavior-based analysis can
be adapted by considering instructions only up to a certain level. As a result, malware
sharing similar behavior may be even discovered if minor parts of the instructions differ,
for instance, if randomized file names are used.

After introducing the main concept of MIST, we describe the concrete representation for
several selected system calls. Since MIST features 120 unique calls with their correspond-
ing attributes, we can not describe all of them, but restrict ourselves to some representative
examples to explain the overall design philosophy.

2.1 MIST Design

Every MIST report consists of several MIST instructions, which encode individual sys-
tem calls monitored during run-time of a malware binary. While MIST can be obtained
directly during dynamic analysis of a malware binary, we herein focus on translation of
XML-based reports generated by the analysis tool CWSandbox [WHF07] to MIST. This
conversion is order preserving, i.e., all contained MIST instructions occur in the same
order as they were originally monitored and reported by CWSandbox.
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As introduced previously, MIST instructions are composed of different fields: a CATEGORY
field, an OPERATION field, and several ARGBLOCK fields. The field CATEGORY en-
codes the global class of the MIST instruction. As shown in Table 1, we distinguish
between 20 different categories. Each category groups a set of related operations, e.g.,
the ‘winsock op’ category contains 13 MIST instructions, including the ‘create
socket’, ‘connect socket’, and ‘send socket’ instructions. These instruc-
tions encode all system calls which are required to perform Winsock based network com-
munication.

Category # syscalls Category # syscalls
01 Windows COM 4 0B Windows Services 11
02 DLL Handling 3 0C System 2
03 Filesystem 14 0D Systeminfo 7
04 ICMP 1 0E Thread 3
05 Inifile 5 0F User 8
06 Internet Helper 5 10 Virtual Memory 5
07 Mutex 2 11 Window 5
08 Network 6 12 Winsock 13
09 Registry 9 13 Protected Storage 9
0A Process 7 14 Windows Hooks 1

Table 1: MIST categories and encoding as well as the number of contained unique operations within
each category

The amount and type of ARGBLOCKs for each MIST instruction depends on the particular
system call. We will give some examples for those later in this text. We implement the
concept of using MIST levels by dividing the ordered attribute blocks of each MIST op-
eration into several levels, with higher level containing attributes with a higher variability
and lower levels those which are more constant. The term variability is used with respect
to different monitored behavior in multiple executions of one and the same sample, or exe-
cutions of different variants from the same family. For example, if a monitored application
creates a file in the Windows temp directory in one execution, it is highly likely that it will
also create such a file in the very same folder in a second execution. In contrast to that,
it is also likely that a different file name will be used, since temporary files are normally
using random file names. Consequently, in a MIST operation we would encode the fact,
that a file is created in level one, the target file path in level two, and the ultimate file name
in level three.

The rationale underlying this rearragangement is that if we look at two executions of the
similar programs on a lower level, e.g., level one, we observe identical behavior, whereas
if we look on a higher level value, we are able to detect fine differences, e.g., in file names.
This form of file name decomposition is strictly used in the MIST transformation: each
file name is split up into the components file type, file path, file name, and
parameter. In most cases the file type and file path are stored on a lower
level than the rest, since these are more robust than other parts of file names.
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2.2 Examples

load dll. The ‘load dll’ system call is executed by every software during process
initialization and run-time several times, since under Windows, dynamic-link libraries
(DLLs) are used to implement the Windows subsystem and offer an interface to the oper-
ating system.

Figure 2 shows the original XML element of the CWSandbox representation and its cor-
responding MIST representation of one ‘load dll’ operation. Except for the attribute
filename hash, all attributes are transfused into the MIST representation. We some-
times discard some attributes, if they are not useful for later analysis steps. To achieve a
case insensitive transformation, all attribute values are converted to lower case first. Then
we apply a fast hash function, such as the standard ELF, and store the results in a lookup
table. Finally, the resulting lookup index is used in our MIST representation as a hexadec-
imal number.

<load_dll filename="C:\WINDOWS\system32\kernel32.dll" successful="1"
address="#7C800000" end_address="#7C908000" size="1081344"
filename_hash="c88d57cc99f75cd928b47b6e444231f26670138f"/>

(a) CWSandbox representation

02 02 | 00006b2c 0c7d3f9c | 00108000 0c94b872 | 00000000 7C800000 7C908000 10

load_dll size"dll"

"c:\windows\system32\"

"kernel32"

parameter

address end_address

successful

(b) MIST representation

Figure 2: Feature representations of system call ‘load dll’. The CWSandbox format represents
the system call as an attributed XML element, while the malware instruction set (MIST) represents
it as a structured string.

For the ‘load dll’ instruction we order the attributes as follows: the first attributes
are the file extension and file path of the library. This information is quite
constant and, therefore, is included in the second MIST level. Note that we order all
attributes with respect to their variability. On level three we store the file size and the
file name of the library. Both of these values may differ when two different variants of
the same program are considered and, therefore, should only be stored on a lower—hence
more detailed—MIST level.

It is evident from this example that the MIST instruction is more suitable for data mining
and machine learning techniques than the traditional XML representation. The compact
encoding ensures a proper comparability between all ‘load dll’ instructions and the
ordering of all attributes permits the introduction of MIST levels, which finally enhances
the quality of analysis.
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connect socket. If a malware binary initiates a TCP network communication via the
Winsock library, it has to perform the ‘connect socket’ system call. Figure 3 shows
a monitored system call in CWSandbox and MIST representation. The sandbox records
five parameters for this system call, namely the used socket number, the IP address
and port of the remote server, the winsock result value and the successful flag,
which states if the connection could be established or not.

<connect_socket socket="1500" remote_addr="192.168.1.163"
remote_port="25" successful="1" winsock_result="10035"/>

(a) CWSandbox representation

12 0a | 0019 | 025d0ce6 | 00343365 10

connect_socket

remote_port winsock_result

remote_address successful

(b) MIST representation

Figure 3: Feature representations of system call ‘connect socket’. The CWSandbox format
represents the system call as an attributed XML element, while the malware instruction set (MIST)
represents it as a structured string.

Except for the socket number, all attributes are converted into MIST representation
(the socket number is a dynamic value that is created by the operating system and has no
further semantic meaning). Furthermore, the attributes are ordered as show in Figure 3(b).
Since the IP address of the remote server and the Winsock result value may vary quite
often, this information is less interesting for our purpose and, therefore, moved into the
third respectively fourth MIST level. Only the remote port remains in the second
MIST level of this instruction.

move file. The third example is one of the most complex conversions. As already shown,
we decompose the file names and only use the file paths and extensions on the second
MIST level, and delay the ultimate file names and possible parameters to a higher level.
For the ‘move file’ call we have one filename-attribute that specifies the source
file, and another one for the destination file. Thus, we have to split and arrange
two file names. Figure 4 shows a monitored ‘move file’ system call in CWSandbox
and MIST notation.

Again, the hash values are not converted into the MIST representation, because the mal-
ware binary may change, e.g., in discharge of the used packer. Therefore, only the ultimate
file names and the parameters are those converted attributes which are not contained in the
second MIST level, see Figure 4. In contrast to the file names and all prior discussed at-
tributes, the values of the filetype, the desiredaccess, and the flags attributes
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<move_file filetype="file" srcfile="C:\DOKU...\Temp\&#x7E;5.tmp.exe"
srcfile_hash="hash_error"
dstfile="C:\WINDOWS\system32\nxzhpxgdmwuod.exe"
dstfile_hash="hash_error" desiredaccess="FILE_ANY_ACCESS"
flags="MOVEFILE_REPLACE_EXISTING"/>

(a) CWSandbox representation

03 04 | 00 400000 01 00006ce5 0d7ac98c 00006ce5 0c7d3f9c | 08d0f2f0 00000000 0bb41dc4 00000000

move_file "c:\dok...\temp\"

creationdistribution

flags "exe"

parameterfiletype

"exe"

"c:\windows\system32\"

"&#x7E;5.tmp" "nxzhpxgdmwuod"

parameter

(b) MIST representation

Figure 4: Feature representations of system call ‘move file’. The CWSandbox format represents
the system call as an attributed XML element, while the malware instruction set (MIST) represents
it as a structured string.

are not hashed while converting into MIST representation, but transferred directly into
the MIST instruction. Since all possible values are known in advance, we use a fix map-
ping between the attribute values and the MIST values. Table 2 shows a fragment of the
mapping table of the flags attribute. There are 26 predefined values which are freely com-
binable.

Value MIST bit vectors
FILE ATTRIBUTE ARCHIVE 00000000000000000000000001
FILE ATTRIBUTE COMPRESSED 00000000000000000000000010
FILE ATTRIBUTE HIDDEN 00000000000000000000000100
FILE ATTRIBUTE NORMAL 00000000000000000000001000
FILE ATTRIBUTE OFFLINE 00000000000000000000010000
... ...
MOVEFILE WRITE THROUGH 00100000000000000000000000
MOVEFILE CREATE HARDLINK 01000000000000000000000000
MOVEFILE FAIL IF NOT TRACKABLE 10000000000000000000000000

Table 2: Mapping between CWSandbox and MIST representation for possible values of the flags
attribute.

For attributes like flags or desiredaccess, we sum up the corresponding MIST bit
vectors. The result is then interpreted as numeric value and transformed into hexadecimal
encoding. This approach is robust against permutations between the single values and
allows re-translating of the MIST encoding.
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3 Empirical Evaluation

We now proceed to present an empirical evaluation of the MIST representation. For this
evaluation, we consider a small sample of 500 malware binaries which have been obtained
from the CWSandbox web site available at http://cwsandbox.org. The malware
binaries have been collected over a period of more than two years from a variety of sources,
such as honeypots, spam traps, anti-malware vendors, and security researchers. From the
overall database, we select a subset of binaries which have been assigned to a known
class of malware by the majority of six independent anti-virus products. Although anti-
virus labels suffer from inconsistency [BOA+07], we expect the selection using different
scanners to be reasonable consistent and accurate. The labeled malware binaries are then
executed and monitored using CWSandbox, resulting in a total of 500 behavior reports of
5 common malware classes.

For each report we consider four different representations of behavior: First, the original
XML format as generated by CWSandbox, second an extended version of the XML format
proposed by [RHW+08] and, third and forth, the MIST representation of behavior for level
1 and level 2.

3.1 Behavior Representation

In this first experiment we compare the utility of MIST for representing malware behav-
ior in a concise form. In particular, we apply the technique for embedding textual data
of malware reports to a vector space introduced by [RHW+08]. That is, each report is
represented by a vector, such that the similarity of behavior can be assessed in terms of
geometric distances.
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Figure 5: Comparison of feature representations for malware behavior. Distance matrices for the
behavior of five malware families are shown, each represented by ten reports. Dark shading indicates
small distances and light shading large distances.

Figure 5 shows results for the representation using different formats. Distance matrices
are shown for three behavior representations, where dark color indicates low distances and
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light color high distances. The extended XML format is omitted, as it only marginally
differs from the regular XML representation. The representation provided by XML data
is not sufficient to reflect all presented classes of malware. For the two malware families
ALLAPLE and LOOPER the distance matrix for the XML data shows very light colored
sections. Thus, the distance between the individual behavior reports is huge which pre-
cludes a good clustering or classification based on XML data. A threshold to classify all
ALLAPLE members correctly would be too low for other malware families, for example,
PODNUHA and SWIZZOR would also be classified as ALLAPLE.

The distance matrices for the MIST encoded data show a much darker coloration along the
diagonal. The members of the individual malware families are much closer to each other,
resulting in almost black colored sections for four malware families using MIST level
1 representation. Overall the distance matrix for MIST level 1 shows the closest match
within the malware families, but in exchange also shows matches among different malware
families, e.g., BANCOS and SWIZZOR. For MIST level 2 representation, we reduce the
noise between the families at the cost of a sligthly less accurate separation between classes.
This reduction of noise results from the more detailed information contained in MIST
level2.

This experiment demonstrates the good representation of behavior realized by MIST. Al-
though we have only studied five classes of malware, it is evident that MIST is more
suitable for behavior-based analysis than XML, as samples of the same malware classes
exhibiting similar behavior are close to each other in the vector space.

3.2 Data Reduction

In the second experiment we compare the size of instructions and reports between XML-
based formats and MIST. Figure 6 shows a comparison for the four considered formats,
namely the original XML format of CWSandbox, an extended representation used by
[RHW+08], and MIST level 1 and 2.
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Figure 6: Comparison of feature representations for malware behavior in terms of size.
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The MIST representation significantly reduces both the length of the reports, as well as,
the average length of instructions. While reports in XML format on average comprise
more than 450 kilobytes, for MIST level 1 only 100 kilobytes and for MIST level 2 300
kilobytes are necessary to store the same behavior – though with a different granularity.
Similarly, for the size of instructions MIST provides a more concise representation, where
on average instruction requires less than 40 bytes. By contrast, for both XML formats
the required size per instruction is twice as large, yielding over 80 bytes. Particularly with
regard to data mining and machine learning methods this data reduction is quite important,
since it dramatically reduces the run-time of analysis on large datasets.

This experiment demonstrates the advantages of representing behavior using the proposed
MIST representation. The behavior is represented in a way which allows far better to
discriminate classes, but at the same time storage size is significantly reduced, which ulti-
mately provides the basis for effective and efficient further analysis of monitored malware
behavior.

4 Conclusions

The Malware Instruction Set (MIST) is a meta language for monitored behavior, which can
be used to make the results of different behavior monitoring systems more comparable. In
addition, the MIST representation is optimized for analysis of software behavior using
data mining and machine learning techniques. We restrict all instructions to significant
attributes only and rearrange these attributes to achieve a well sorted ordering which allows
the introduction of accuracy levels. Furthermore, we reduce the size of the reports by
encoding each instruction and attribute with the help of hash tables. In summary, using the
MIST representation as input enhances both the run-time and the results of data mining
and machine learning analysis.
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