
i
i

“proceedings” — 2017/8/24 — 12:20 — page 2365 — #2365 i
i

i
i

i
i

Maximilian Eibl, Martin Gaedke (Hrsg.): INFORMATIK 2017,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 15

Knowledge-driven Architecture Composition: On the usage

of case-based formalization methods for reliable and

automated component coupling

Fabian Burzlaff 1

Abstract: Automating component coupling has been around for various decades. In fact, in the last

few years’ interface and component matching progress seems not to be regarded as a hot-topic in

research. However, reappearing paradigms such as decentralized and flexible production scenarios

are again in need for automated system coupling. This is mainly due to the increasing number of

heterogeneous devices. Building upon existing component integration research, this PhD project

introduces case-based reasoning techniques for formalizing integration knowledge to overcome

standardization requirements. As a consequence, integration knowledge becomes reusable.

Keywords: Knowledge-driven architecture composition, Interoperability, Semantic Integration,

Dynamic Adaptable Systems, Industrial Internet of Things

1 Motivation and Problem statement

In current trends, such as Industrial Internet of Things (IIoT), information technology is

postulated to merge with classical automation techniques. For example, so called “Cyber-

Physical Systems” are therefore equipped with high-level programming interfaces.

Current information modelling frameworks like OPC-UA2 provide means to create

industrial information models and establish a secure communication between

heterogeneous machines. However, industry also still relies on informal integration

standards. Especially integration tasks in automation scenarios are still executed mostly

by humans as soon as syntax and/or semantics of two interfaces differ. Enforced by the

rising demand for connecting decentralized production machines and executing dynamic,

adaptable processes with low batch sizes, manual integration tasks may slow down or even

hinder future process automation.

For long time, solutions for automated component coupling have been proposed in service-

based and component-based research communities [Va16] [Pl16] [Vi07]. On the one hand,

semantic service descriptions with formalized semantics such as W3C Recommendation

for “Semantic Annotations” for Web-Service-Description-Language (e.g. SAWSDL3 or

WSDL-S4) have already been tested in various applications scenarios [Vi07]. On the other

1 University of Mannheim, Institute for Enterprise Systems, L15 1-6, 68131 Mannheim, burzlaff@es.uni-

mannheim.de
2 https://opcfoundation.org/about/opc-technologies/opc-ua/
3 https://www.w3.org/TR/sawsdl/
4 https://www.w3.org/2005/04/FSWS/Submissions/17/WSDL-S.htm

cbe doi:10.18420/in2017_240

Maximilian Eibl, Martin Gaedke. (Hrsg.): INFORMATIK 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 2365

mailto:burzlaff@es.uni-mannheim.de
mailto:burzlaff@es.uni-mannheim.de
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://www.w3.org/TR/sawsdl/
https://www.w3.org/2005/04/FSWS/Submissions/17/WSDL-S.htm
https://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.18420/in2017_240

i
i

“proceedings” — 2017/8/24 — 12:20 — page 2366 — #2366 i
i

i
i

i
i

16 Fabian Burzlaff

hand, interface matching techniques and component models (e.g. CORBA5) have also

produced a lot of valuable results [Va16] [Pl16]. In addition, other approaches for

component discovery exist. Hummel [Hu08] has developed test-driven techniques for

semantically identifying general software components.

Nevertheless, completely formalizing a service or interface (e.g. pre- and post-conditions

or quality attributes) requires a distinct amount of manual work. As component providers

can hardly anticipate for which usage-context a component will be requested, such

formalization techniques quickly consume (too) much work with no direct benefit for

component providers (i.e. their semantics must be “fully” formalized for each possible

customer use-case). However, by interconnecting more and more devices industry is

particularly in need for an automated and reliable component coupling mechanism to meet

increasing market- and customer-demands.

Hence, there is a dilemma between huge efforts for creating complete, (un)-standardized

semantic component specification and the rising amount of required point-to-point

integrations (e.g. realized by adapters). Based on the assumption that an overall semantic

standardization for certain industry branches (e.g. plant engineering) opposed to other

branches (e.g. AUTOSAR6 for automotive) is not feasible, current academic interface

formalization approaches are not practical. This PhD project explicitly allows for

incomplete, case-based interface formalization and can be summarized as:

“How can software components be semantically coupled in an automated way based

on partially incomplete integration knowledge?”

2 Solution Approach

Due to the increasing speed of technological innovations, it will be

hard to come up with up-to-date semantic interoperability standards.

Case-based reasoning (CBR) methods seems to be a reasonable

approach for tackling the problem of slow semantic standardization

processes from upside down [AgPl94]. However, as solution for new

integration cases are only loosely coupled to previous solutions

using similarity measures like “nearest neighbour” (c.f. Figure 1), a

high reliability cannot be achieved within the traditional approach.

This means that input and output descriptions in the knowledge base

(KB) must be expressive but also reliably decidable (RQ1).

Although ontologies for meeting high reliability demands in production scenarios seem to

be a promising approach for capturing integration cases, it is not clear whether deductive,

closed-world reasoning approaches to derive new integration rules are usable (c.f. Fig. 2 -

Revise). Similarity measures are not applicable for case revision as automated component

coupling can only take place based on secured facts. Thus, efficiently deriving integration

rules and KB consistency checks must be evaluated (RQ2 and RQ3).

5 http://www.omg.org/spec/CCM/
6 https://www.autosar.org/

Figure 1: Problem-Solution

Space

2366 Fabian Burzlaff

http://www.omg.org/spec/CCM/
https://www.autosar.org/

i
i

“proceedings” — 2017/8/24 — 12:20 — page 2367 — #2367 i
i

i
i

i
i

Knowledge-driven Architecture Composition 17

Figure 2: Traditional Case-based Reasoning Cycle, adapted from[AaPl94]

In order to reuse derived integration knowledge for automated component coupling of

previously unknown components, a suitable software engineering approach is needed.

This engineering approach must provide means for transforming declarative integration

knowledge into imperative – at best even into deployable - code (RQ4).

As a restriction, we do not focus on technical or protocol specific integration issues as our

approach assumes a suitable middleware (e.g. an Enterprise Service Bus). Furthermore,

fuzzy interface matching techniques can be used for component suggestion but not for

automating component coupling. Available adaptation techniques can be reused, but must

be adapted for processing declarative integration rules (c.f. Fig.2 - Solution)

Despite the need for manual component integration executed by humans in the beginning,

inserting formalized integration knowledge evolutionary in a suitable KB can result in

automated component coupling without depending on slow standardization process. This

can ultimately result in a minimized, manual point-to-point integration

3 Related work

To tackle the proposed problem, several mature research streams can be considered. For

this PhD project, especially CBR, schema matching for integration scenarios and

component adaptation are currently regarded as relevant.

3.1 Case-based reasoning methods

CBR and its foundations were first mentioned by Aamodt and Plaza in 1994 [AgPl94].

They introduced a problem-based learning method that derives solution for new problems

based on similar and already solved problems. As cases are retrieved based on a

continuous similarity measure, proposed solution may only be partially correct. Although

domain-specific adaptation knowledge can be learned and thus improve component

adaptation [CNR06], the proposed solution must always be verified during application.

Thus, deductive inference mechanisms (e.g. Pellet7) have been incorporated into the CBR

7 https://github.com/stardog-union/pellet

Knowledge-driven Architecture Composition 2367

https://github.com/stardog-union/pellet

i
i

“proceedings” — 2017/8/24 — 12:20 — page 2368 — #2368 i
i

i
i

i
i

18 Fabian Burzlaff

process. As a result, case definitions as well as case retrieval have been significantly

improved (i.e. high similarity measure) [BM03]. CBR supported by ontologies has been

successfully applied in the field of medicine and biology, for instance to correctly diagnose

multiple cancer types [Be11].

Although distinct component integration tasks can theoretically be interpreted as cases as

well, explicitly defined integration rules, which can be reasoned about, are not present in

the traditional CBR approach. Furthermore, the intended functionality to reason about the

semantics of integration rules explicitly in a reliable way is new as these semantics are

typically implicitly defined in similarity measures or domain-specific adaptation rules.

3.2 Schema matching for integration scenarios

Schema-matching techniques for information models evolved from database communities

into various other information engineering discipline. For example, ontologies are often

used for information integration scenarios as they offer features to reason about the

semantics of schema elements [Wa01]. Furthermore, Niepert et al. [Ni11] developed an

approach for ontology matching where semantic characteristics are already considered

during the matching process. The logic- and probabilistic-based computation of the most

“equal” ontology could be further improved by interactive integration tools [SNF12].

Researchers from component-based communities have dealt with different levels of

formalized semantic service descriptions. Platenius [Pl16] developed a tool-based

approach for combining different matching techniques for arbitrary formalized service

specifications. They propose the concept of “fuzzy matching” for dealing with uncertainty

where the produced results are then further processed by the user (i.e. service integrator).

Both, information integration based on ontologies as well as fuzzy service specification

matching do need user input during their matching task to deal with uncertainty. However,

this is not possible for automated component coupling scenarios.

3.3 Component adaptation

As soon as a component mismatch occurs (e.g. syntactic signature mismatch), engineering

approaches for component adaptation are needed. These are typically executed by a system

integrator or automated to a certain degree [BOR04] [HA10]. Becker et al. [Be06]

describes basic steps of an engineering approach for component adaptation. They

distinguish between the mismatch types “Technical-Signature-Protocols-Concepts” as

well as “Quality Attributes”. Next, they propose different imperative programming

patterns for each mismatch type (e.g. Adapter). Hummel et al. [Hu08] [HA10]

introduced an approach for automatically generating all syntactically feasible adapters for

a provided and required interface constellation and select the “the most semantically”

correct one by running test cases. This approach can already solve mismatches types like

naming of methods or ordering of parameters.

Although these approaches propose multiple solutions to re-occurring integration

2368 Fabian Burzlaff

i
i

“proceedings” — 2017/8/24 — 12:20 — page 2369 — #2369 i
i

i
i

i
i

Knowledge-driven Architecture Composition 19

problems, no sophisticated solution for automated and reliable component adaptation “on-

the-fly” is known. Currently, (in-) formal standards, if available, are used for automating

component coupling in dynamic adaptive systems. Otherwise, time-consuming point-to-

point adapters must be programmed.

4 Research challenges

In order to tackle our research problem, we focus on the following research questions:

RQ1. What characteristics must a suitable description language fulfil for capturing

integration cases as well as integration rules (i.e. representation of integration rules and

integration cases)?

RQ2. How can integration rules be derived from an integrated ontology (i.e. not on

feature-similarity but on reliable case facts)?

RQ3. What are suitable knowledge-management techniques for updating partially-

incomplete integration KBs (e.g. interfaces with same syntax but different semantics)?

RQ4. Which steps must an integrator fulfil to reuse formalized integration knowledge?

5 Status quo and next steps

Our approach for case-based formalization of integration knowledge making integration

knowledge reusable has been presented at ICSA [BB17]. Next, we will focus on a

literature review answering RQ1 and RQ2 (until end of 2017). RQ3 will deal with test-

based assessments to ensure KB consistency, but not knowledge-management techniques

in general (until mid of 2018). A suitable engineering approach will be constructed and

evaluated by case studies (RQ4). Exemplary evaluation criteria are “Time to formalize

integration knowledge against existing approaches” or “Covered integration cases” for

measuring the expressiveness of our language and the amount of integration cases needed

for automated component coupling. The technical feasibility of this approach will be

estimated by a prototypical implementation (until end of 2019).

References

[AaPl94] Aamodt, Agnar, and Enric Plaza. "Case-based reasoning: Foundational issues,

methodological variations, and system approaches." AI communications 7, no. 1 (1994):

39-59.

[BB17] Burzlaff, Fabian, and Christian Bartelt. "Knowledge-Driven Architecture Composition:

Case-Based Formalization of Integration Knowledge to Enable Automated Component

Coupling." In Software Architecture Workshops (ICSAW), 2017 IEEE International

Conference on, pp. 108-111. IEEE, 2017.

Knowledge-driven Architecture Composition 2369

i
i

“proceedings” — 2017/8/24 — 12:20 — page 2370 — #2370 i
i

i
i

i
i

20 Fabian Burzlaff

[Be06] Becker, Steffen, Antonio Brogi, Ian Gorton, Sven Overhage, Alexander Romanovsky,

and Massimo Tivoli. "Towards an engineering approach to component adaptation." In

Architecting Systems with Trustworthy Components, pp. 193-215. Springer Berlin

Heidelberg, 2006.

[Be11] Begum, Shahina, Mobyen Uddin Ahmed, Peter Funk, Ning Xiong, and Mia Folke.

"Case-based reasoning systems in the health sciences: a survey of recent trends and

developments." IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews) 41, no. 4 (2011): 421-434.

[BM03] Bergmann, Ralph, and Martin Schaaf. "Structural case-based reasoning and ontology-

based knowledge management: A perfect match?." J. UCS 9, no. 7 (2003): 608-626.

[BOR04] Becker, Steffen, Sven Overhage, and Ralf H. Reussner. "Classifying software

component interoperability errors to support component adaption." In International

Symposium on Component-Based Software Engineering, pp. 68-83. Springer Berlin

Heidelberg, 2004.

[CNR06] Craw, Susan, Nirmalie Wiratunga, and Ray C. Rowe. "Learning adaptation knowledge

to improve case-based reasoning." Artificial Intelligence 170, no. 16-17 (2006): 1175-

1192.

[HA10] Hummel, Oliver, and Colin Atkinson. "Automated creation and assessment of

component adapters with test cases." In International Symposium on Component-Based

Software Engineering, pp. 166-181. Springer Berlin Heidelberg, 2010.

[Hu08] Hummel, Oliver. "Semantic component retrieval in software engineering." PhD diss.,

Universität Mannheim, 2008.

[Ni11] Niepert, Mathias, Jan Noessner, Christian Meilicke, and Heiner Stuckenschmidt.

"Probabilistic-logical web data integration." In Reasoning Web. Semantic Technologies

for the Web of Data, pp. 504-533. Springer Berlin Heidelberg, 2011.

[Pl16] Platenius, Marie Christin. "Fuzzy matching of comprehensive service specifications."

PhD diss., Dissertation, Paderborn, Universität Paderborn, 2016, 2016.

[SNF12] Stuckenschmidt, Heiner, Jan Noessner, and Faraz Fallahi. "A Study in User-centric Data

Integration." In ICEIS (3), pp. 5-14. 2012.

[Va16] Vale, Tassio, Ivica Crnkovic, Eduardo Santana de Almeida, Paulo Anselmo da Mota

Silveira Neto, Yguaratã Cerqueira Cavalcanti, and Silvio Romero de Lemos Meira.

"Twenty-eight years of component-based software engineering." Journal of Systems and

Software 111 (2016): 128-148.

[Vi07] Vitvar, Tomas, Adrian Mocan, Mick Kerrigan, Michal Zaremba, Maciej Zaremba,

Matthew Moran, Emilia Cimpian, Thomas Haselwanter, and Dieter Fensel.

"Semantically-enabled service oriented architecture: concepts, technology and

application." Service Oriented Computing and Applications 1, no. 2 (2007): 129-154.

[Wa01] Wache, Holger, Thomas Voegele, Ubbo Visser, Heiner Stuckenschmidt, Gerhard

Schuster, Holger Neumann, and Sebastian Hübner. "Ontology-based integration of

information-a survey of existing approaches." In IJCAI-01 workshop: ontologies and

information sharing, vol. 2001, pp. 108-117. 2001.

2370 Fabian Burzlaff

