
Taming the Software Development Complexity with Domain
Specific Languages

Experiences from Deploying MPS-based DSLs for Computed Tomography Scanners
at Siemens Healthineers

Daniel Ratiu1, Holger Nehls2, Jochen Michel3

Abstract: Modern computed tomography (CT) scanners are highly complex and Ćexible devices.
This versatility is realized with a multitude of interconnected parameters and rules which are deĄned
by domain experts in so-called scanner model speciĄcations distributed over almost one hundred
documents. The primarily used tools to write these documents (e.g. MS Word, MS Excel) are domain
agnostic and they support only plain natural-language for the speciĄcation. Consequently, maintaining
a valid scanner speciĄcation is a tedious, error-prone and therefore expensive process. To tackle the
complexity of scanners parameters speciĄcations, over the last two years we developed and deployed
an eco-system of domain speciĄc languages (DSLs) and associated tooling, covering a central portion
of the scanner domain. The languages are developed using the JetbrainsŠ MPS language workbench. In
this paper, we present our experiences with developing our language eco-system. We brieĆy describe
the language architecture, the design and development process that led us there, and discuss variation
points of our approach and present in more detail a set of lessons learnt and best practices.

Keywords: domain speciĄc languages, industrial experience, JetbrainsŠ Meta-Programming System

1 Introduction

Non-invasive imaging is one of the most important improvements in medicine and enables
doctors to diagnose and heal diseases that are not visible without having insights into the
human body. Modern Computed Tomography (CT) scanners are highly complex machines,
enabling radiologists to perform examinations of patients, like trauma scans, evaluation
of neurological abnormalities, detection of tumors or diagnostic of heart diseases. While
the x-ray beam rotates around the patient, the detector measures the attenuation, which
represents the composition of the scanned object. Based on this volume data, it is possible
to reconstruct slice images and calculate 3D visualisations of the human body and organs.
This data is the basis for applications that support the radiologist in the diagnose process.

CT scanners are perfect examples of software intensive cyber-physical systems Ű a large
amount of software enable the realization of complex use-cases and the interaction with

1 Siemens Corporate Technology, Munich, daniel.ratiu@siemens.com
2 Siemens Healthineers, Forchheim, holger.nehls@siemens-healthineers.com
3 Siemens Healthineers, Forchheim, jochen.michel@siemens-healthineers.com

cba

I. Schaefer, D. Karagiannis, A. Vogelsang, D. Méndez, C. Seidl (Hrsg.): Modellierung 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 281

https://creativecommons.org/licenses/by-nc/3.0/
daniel.ratiu@siemens.com
holger.nehls@siemens-healthineers.com
jochen.michel@siemens-healthineers.com
https://creativecommons.org/licenses/by-sa/4.0/

the real world. The system depends on a wide set of parameters that represent quantities
from the physical world, such as dose parameters, geometric properties and special scanner
capabilities. Besides the program code per se, the complexity of software is also due to
the big variability space deĄned by these conĄguration parameters. Valid combinations of
parameters reĆect physical capabilities of the devices and the desired clinical cases to be
performed. A central challenge that the scanner development teams need to address is to
keep the parameters consistent for a wide variety of clinical cases, on different hardware
and across product lines. Inconsistencies of the parameters conĄgurations can lead to bad
imaging or even damages to the CT scanners.

Traditionally (Figure 1-up), experts from the CT domain (e.g. physicists) deĄne possible
parameter conĄgurations using tables in MS Excel and MS Word documents. These
documents are written in plain natural language and have a very weakly deĄned structure.
Quality assurance of these speciĄcation documents is realized exclusively through manual
reviews. Once the valid conĄgurations are deĄned, a semi-automatic process involving
manual transformations and different scripts is employed to generate conĄguration Ąles
in XML format which can be loaded by the scanner software. This manual process of
creating the speciĄcations is slow, prone to inconsistencies and reaches its limits due to the
complexity of modern CT scanners.

The use of domain speciĄc modeling tools drastically increases the development productivity
and quality: on the productivity side domain experts beneĄt from a higher level of abstraction
and higher automation; on the quality side they beneĄt from modeling guidance and advanced
consistency checks. To cope with the complexity of the CT domain, we have built a set of

Plain Text Specification
Documents and Tables

Specification with
Appropriate Models

Automated Consistency
Checks

Complete
Manual Reviews

Scanner XML
Configuration Files

Documents to Archive

Scanner XML
Configuration Files

Fig. 1: Specify parameters and their relations using plain text and Excel tables requires big review
effort for quality assurance and fragile semi-automatic generation of XML Ąles (top); Model-driven
speciĄcation of parameters enables deep and automatic consistency checks and automatic generation
of XML-based conĄguration Ąles to be loaded on the server (bottom).

282 Daniel Ratiu, Holger Nehls, Robert Walter, Jochen Michel

domain speciĄc languages and tooling (in the following called Scanner-DSL) which we use
to specify the conĄgurations of parameters of CTs. These rich models allow a wide range of
consistency checks and automatic generation of conĄguration Ąles in XMLs format and
which are subsequently loaded in CT scanners (Figure 1-bottom). Besides XML, for process
compliance reasons, we also generate PDF documents which are subsequently archived.

Contributions: In this paper we present our experiences with developing an eco-system
of domain speciĄc modeling languages over the last two years. Model-driven development
approaches are widely used within Siemens Healtineers. However, the Scanner-DSL project
is the Ąrst big project based on language engineering technologies. Thereby, besides
presenting the tooling per se, this paper also describes our approach on technology transfer
and adoption of domain speciĄc modeling approaches in an industrial setting. Last but not
least, based on our experience, we derive a set of lessons learnt and open challenges which
need to be addressed for a broader adoption of the technology.

Structure: In Section 2, we give a brief overview of the technologies used and the
developed DSLs. In Section 3 we present the development process and the major phases of
our project. In Section 4 we discuss variation points of the approach and present our lessons
learnt. In Section 6 we conclude the paper and give an outlook on future work.

2 Scanner-DSL

Scanner-DSL is an eco-system of languages and tooling built with JetbrainsŠ MPS4 language
workbench and the extensions offered by mbeddr-platform5. In Figure 2 we illustrate the
architecture of our tool.

Jetbrains' MPS

mbeddr platform libraries

Scanner DSLs
(19 languages, 280 meta-model classes)

Infrastructure

Healthineers'
languages

Scanner Configuration Application

Fig. 2: Scanner-DSL architecture at a glance: the application, built around a set of domain speciĄc
languages, is based on JetbrainŠs MPS and the extensions provided by the mbeddr-platform.

For reasons of brevity, we will not describe MPS or the mbeddr-platform libraries in detail;
we refer the reader to [Ca14], [Vo13] or [Vo16]. However, in order to make this paper
self-contained, we will brieĆy present in the following two subsections the major features

4 https://www.jetbrains.com/mps/

5 http://mbeddr.com/platform.html

Taming the Software Development Complexity with Domain SpeciĄc Languages 283

https://www.jetbrains.com/mps/
http://mbeddr.com/platform.html

of MPS and of mbeddr-platform which we used in our project. In Section 2.3 we brieĆy
describe our tool.

2.1 Jetbrain’s MPS

JetbrainsŠ Meta-Programming System6 is an open-source language workbench which offers
comprehensive support for all concerns of the development of DSLs and associated tooling.
In MPS, a language implementation consists of several language aspects Ű e.g. structure,
concrete syntax, constraints, type system, transformations, interpreters, or debuggers. MPS
ships with a set of dedicated DSLs for implementing each language aspect.

Editors. MPS, at its core, features a projectional editor to display models. Projectional
editors do not use parsers; instead, they render, or project, a programŠs abstract syntax tree
(AST) in a notation deĄned by the language developer. Language engineers can choose to
use speciĄc notations appropriate for the business domain they address Ű e.g. plain text,
forms, tables, diagrams, mathematical formula or trees.

Context Sensitive Constraints. MPS guides the language users (i.e. domain experts)
towards building models in two ways: 1) constructively by preventing the deĄnition of
invalid models up-front using an advanced set of scopes and constraints; and 2) analytically

by allowing the deĄnition of advanced checks in the IDE. The constructive way is using
the projectional nature of MPS directly Ű the users are allowed to enter only valid content.
Further constraints are essentially implemented as if-statements that check some property
of the AST and report errors if invalid code is detected.

Generators. MPS generators usually work as a chain of model-to-model transformations
where domain-speciĄc ASTs get enriched by platform-speciĄc information with each
transformation step. Eventually, a chain reaches the target language and a model-to-text
transformation produces an output text Ąle. Whilst MPS generators are not bound to this
design, it is the most common use case since it allows for a very modular approach to
combine and interchange transformation steps.

Tooling via IDE Extensions MPS also allows the deĄnition of IDE extensions such as
new menus or views; language engineers use these extensions extensively for building
domain speciĄc tooling or to integrate external tools. The IDE extensions are implemented
via regular Java/Swing programs and a couple of MPS-speciĄc extension points.

6 https://www.jetbrains.com/mps/

284 Daniel Ratiu, Holger Nehls, Robert Walter, Jochen Michel

https://www.jetbrains.com/mps/

Foundational Support for Model-driven Development MPS offers comprehensive
support for the entire life-cycle of model based development with domain speciĄc languages:
integrating with different version control systems, merging and diffing at model level,
testing of different aspects of the language deĄnition, refactorings of languages and models,
migration of models when languages evolve.

2.2 mbeddr Platform

Besides the set of DSLs and language deĄnitions aspects shipped with MPS, we made use
of an additional set of libraries for developing new languages. These libraries are offered by
the mbeddr platform [mbe15] provide additional language deĄnition aspects and DSLs for
deĄning special editors. We have made use of tabular and mathematical notations [VL14],
grammar cells for the deĄnition of consistent editors and language documentation aspect.

2.3 Scanner DSL

In Figure 3 we present a screenshot of our tool which contains examples of three models,
each built with a different DSL: a model which describes the available parameters with their
set of possible values (top-left) and two models describing possible valid combinations of
these parameters. Our models make use of textual, mathematical and tabular notations. On
the bottom-right we illustrate errors caused by a failed consistency check.

Our eco-system of DSLs contains 19 languages providing 264 concepts (i.e. meta-model
classes), with 57 properties and 264 relations between them. We implemented 59 constraints
and scoping rules which restrict constructively the building of semantically Ćawed models
and 112 more complex consistency checks. For quality assurance of these languages, we
have extensively used the testing infrastructure of MPS. We created ca. 60 test-cases with
more than 450 assertions. The generators are tested by comparing the generated artifacts
with a manually reviewed baseline.

Usage Our tool is currently used in production to model three existing scanners. The
initial modeling was done by one of the members of the language engineering team. We
were constantly in touch with our domain experts and future users of the tool. At the end of
2017, the user models have 104 parameters, 1111 composite rules containing 5553 atomic
rules distributed across more than 200 tabular rules. These models have been recently taken
over and enhanced by three domain experts. Our domain speciĄc tool went into production
several months ago and is used today full-time by two users (both non-computer scientists).

Taming the Software Development Complexity with Domain SpeciĄc Languages 285

Fig. 3: Examples of models built with three different DSLs. The models are deeply integrated with
each other which enables complex consistency checks.

3 Development Process

In the following we present three highlights of our project concerning the development
process: the phases of our project, enabling continuous integration of languages and models
and involving domain experts.

3.1 Project Phases

Our development process varied substantially within the last two years of the project and
can be divided into four phases. In Table 1 we present an overview over these phases, their
duration and the number of persons involved.

Phase 1: Ramping-up During the Ąrst 6 months of the project, until the team got conĄdent
with the technology, we had a ramping-up phase. It was characterized by the exploration of
the MPS technology stack and rapid prototyping of relevant use-cases in order to understand
the limitations. The main goal was to produce enough functionality to convince the other
teams about the meaningfulness of the modeling approach. During the ramping-up phase
most of the development took place during several hackathons, each of them being three
days long.

286 Daniel Ratiu, Holger Nehls, Robert Walter, Jochen Michel

Phase 2: Initial development After the ramping-up phase, several team members got
conĄdent with the MPS technology and the team allocated half a person for the development.
Soon after, the Ąrst interns joined the team and the development got a higher dynamics also
in-between the hackathons. The hackathons were used to explore advanced features of MPS
and to solve more complex problems.

Phase 3: Mature project After one year, the development was accelerated in order to
synchronize with the planned deadlines. Our team grew further and this lead to a signiĄcant
increase of the code-base and functionality. We integrated our project in the existing
continuous integration infrastructure and increased the coverage of our tests.

Phase 4: Production After one and half years since project start, our system went into
production and the size and the number of user-models describing parameters conĄgurations
started to grow rapidly. The Ąrst domain experts started to use our DSLs and the development
of languages and user models got different dynamics. This lead to the necessity to decouple
the life-cycles of language development and the use of languages for developing CT
speciĄcations.

Phase Duration (in months) Team-size (#developers / #students)

Ramping-up 6 0.5

Initial devel. 6 0.8 / 1

Mature project 9 1.2 / 2

Production 5 2.8 / 2

Tab. 1: The dynamics of our project changed substantially between phases: we started with a very
small team and and once the value of the technology had been proven, the team was increased in size
and contributes directly to productive software development projects.

3.2 Continuous Integration

Both the language engineering and the domain experts teams are distributed: language
development happens in Forchheim, Cologne and Munich. The domain experts work
distributed from Germany and China. Starting relatively early in the development of the
Scanner-DSLs, we introduced continuous integration for the development of DSLs. After
reaching the Ąrst functional milestone, we deployed the languages and tooling as a standalone
application to be used by domain experts. In Figure 4 we illustrate these two delivery
pipelines: the domain experts use releases of the Scanner-DSL tooling for building their
models. Artifacts (like conĄgurations as XML) are generated automatically from the models
and integrated within the continuous integration pipeline for our scanner software.

Taming the Software Development Complexity with Domain SpeciĄc Languages 287

Language Development

Continuous integration of domain
specific languages and tooling

Language Use

Language
Engineers

Release

Continuous integration of CT
parameter models

Domain
Experts

Fig. 4: The continuous integration is performed both for the language development and for the language
use. When the eco-system of DSLs reach a new baseline, we make a release of the Scanner-DSL
tooling and the domain experts use this release for their development of parameters conĄgurations for
the CT scanners.

3.3 Involving Domain Experts

The DSLs we develop capture the semantics of the CT scanner domain in an explicit and
precise manner. The language development process went closely together with a knowledge
engineering process inside the organization. At any point in time, at least one member of
the language development team had several years of experience with the scanner software
development and thereby in-depth domain knowledge.

During creation of languages, we had to make the domain knowledge explicit (i.e. choose
which concepts and relations among them are captured as Ąrst class language constructs,
and which constraints need to be implemented). We identiĄed edge-cases for which several
domain experts needed to be involved in discussions. Many times these experts had a slightly
different view over their domain and they needed to agree upon how the domain looks like.

4 Discussion and Lessons Learnt

In this section we discuss important variation points of our approach and present our lessons
learnt and open challenges.

4.1 Discussion

On Projectional Editing One of the most important distinguishing feature of MPS is the
projectional editing. Being a projectional editor, MPS does not feel like text editors when
users edit their models. In order to increase the Ćuency of modelsŠ creation and modiĄcation,
MPS allows advanced customization of editor actions Ű e.g. what happens when the user
presses ŤbackspaceŤ in a certain editor cell, or how are linear sequences of lexical items are
transformed into models. We have invested some effort to make the editing experience as

288 Daniel Ratiu, Holger Nehls, Robert Walter, Jochen Michel

intuitive as possible. At the same time this means that the users, who know and sometimes
expect fundamental features of Excel or Word, need to understand that the focus of the new
tool (from their point of view) is not to mirror known textual editor features, but to model
the semantics of the computed tomography scanner data. The initial feedback from our users
with respect to the usability of the editor is positive Ű the users immediately understood
that they are not editing ŤsimpleŤ text but rich models and thereby they calibrated their
expectations.

On MPS’s Extensibility The seamless extension capabilities of MPS with additional
language deĄnition aspects is a key feature which we made use of in our project. Besides
the standard aspects shipped with MPS, as presented in Section 2, we have intensively used
the Ťmbeddr-platformŤ libraries featured as part of mbeddr. Dependencies among different
extensions need to be managed appropriately such that the deployed Rich Client Platform
(RCP) can be built in a meaningful manner.

On Language Evolution and Models Migration on Multiple Branches MPS provides
out-of-the-box advanced support for evolving DSLs and migrate the models to the new
versions of the DSLs. We have used these features intensively to perform agile language
development. However, if the models are built on different branches then they also need to
be migrated to new language versions individually. Comparing (or merging) these branches
after migrations have been performed on them proves to be challenging.

4.2 Lessons Learnt

DSL Development and Domain Engineering go Hand-in-hand. In addition to the
DSL development itself, substantial effort has been involved in domain engineering. The
knowledge of domain experts (i.e. domain concepts, their relations and constraints on valid
combinations) at a certain point in time was formalized in the DSL. The DSLs help us
better understand, manage and consolidate the knowledge in our organization. Once initial
versions of the DSL was built, it was subsequently piloted to model different aspects of the
scanner domain and by doing this we identiĄed improvements of DSL.

Along with the development of DSLs the team went through a learning process about the
domain Ű we continuously got feedback from domain experts Ű and ca. 10-15 persons are
aware about different details of our DSLs and continuously validate what we are developing.

Continuously Demonstrate the Added Value from Early Stages Initial experience with
creating the user models was very useful to convince the stakeholders about the value of
the model-based approach. We were able to detect several inconsistencies in the original

Taming the Software Development Complexity with Domain SpeciĄc Languages 289

data which passed through multiple-review sessions and this was a strong argument for
semantically rich models. The possibility to generate XML conĄguration Ąles from models
quickly and in a fully automated way served as additional argument for our approach.

MPS Enables Highly Efficient Development of DSLs The infrastructure provided by
MPS and mbeddr-platform allowed us to develop the languages in a highly efficient manner.
After a few hours of development, we could get a baseline for languages and tooling which
can be used as input to engage in discussions with domain experts. This baseline is then
subject to iterative improvements, each iteration consisting often only of several hours of
development.

Need for Support for the Entire Life-cycle of DSLs The support for entire life-cycle of
DSL engineering and development offered by MPS proved to be essential - starting from
the DSLs used to deĄne different language aspects, with testing, refactoring and support for
continuous integration.

Configuration Management The DSL development team is distributed between Forch-
heim, Cologne and Munich. The team of domain experts using the DSLs is distributed as
well between Germany and China. The support offered by MPS for advanced versioning
and merging both for language development as well as for the language use is of high
importance for the adoption.

Semantic Richness Besides the deĄnition of appropriate language constructs and con-
straints which prevent up-front building meaningless models, we have implemented a rich
set of consistency and plausibility checks on the scanner models. These have proven to be
highly useful and are appreciated by domain experts since they get feedback immediately in
the IDE (e.g. in case consistency is violated). Corrective actions can be taken immediately
before errors are discovered later in process or even introduced into the production.

Testing and quality assurance We have developed a comprehensive test-suite for testing
the context-sensitive constraints and the generators. The checking rules are developed
test-driven; the generator for XML artifacts is validated by using a baseline test method
and reaches a block coverage of about 97% (measured at Java level using the EMMA7

code coverage tool). Each test is performed latest on our build server, triggered by every
commit. These tests proved to be highly useful whenever we evolved the DSLs or migrated
them to a new version of MPS. Overall, we estimate that the effort spent on writing unit
test was 30% of the total development effort. The integration of testing in our continuous
integration framework accounted for further 10% of the effort. We feel however that the
testing capabilities of MPS could be enhanced towards support for Ťend-to-endŤ testing.

7 http://emma.sourceforge.net/

290 Daniel Ratiu, Holger Nehls, Robert Walter, Jochen Michel

http://emma.sourceforge.net/

5 Related Work

[Vo17] presents lessons learnt from developing mbeddr, an open-source stack of domain
speciĄc languages built on top of C using JetbrainsŠ MPS. mbeddr is one of the biggest
DSLs based projects involving 10+ person years of development effort. This is the closest
work on experience with instantiating DSLs technology with JetbrainsŠ MPS. Compared to
[Vo17], this paper presents experiences and particularities with transfering the language
engineering technologies into industrial context and the entire life-cycle (i.e. from domain
engineering to supporting domain experts in using the tooling) of deploying DSLs.

[MPP14] presents experiences and challenges with domain speciĄc modeling in industrial
automation domain. [To16, TK16] describes experiences with introducing MetaEdit+
language workbench in industrial context to create domain speciĄc modeling languages. The
experienced presented by Tolvanen and colleagues are very much similar to our experiences:
support for the entire life-cycle of languages and models is needed, domain speciĄc modeling
and domain speciĄc tooling drastically increase the productivity of the software development.
Compared to these works, our experiences in this paper are based on a single, medium sized
language engineering project in the healthcare domain. We also describe our approach to
transferring language engineering technology in industrial practice.

6 Conclusions

In this paper we presented the Ąrst results from a two years endeavor on deploying domain
speciĄc languages to describe parameters and their conĄgurations for CT scanners. This
is only a Ąrst step to a holistic model based approach tailored to the needs of Siemens
Healthineers Computed Tomography. The efforts reported here are part of a longer term
project aimed at increasing the automation of the development of Computed Tomography
scanner software. This is only the initial baseline representing one speciĄcation document Ű
we plan to extend the languages and models for up to other 100 speciĄcations successively. In
parallel, the development of new innovative systems continues and new areas of applicability
can be anticipated.

Acknowledgements. We would like to thank Robert Walter8 for the discussions and
feedback on this paper.

References

[Ca14] Campagne, Fabien: The MPS Language Workbench. CreateSpace Publishing, 2014.

[mbe15] mbeddr Platform. http://mbeddr.com/platform.html, 2015. Accessed: 2017-12-15.

8 Independent Consultant, Gleueler Str. 179, 50931 Köln, info@digital-ember.com

Taming the Software Development Complexity with Domain SpeciĄc Languages 291

http://mbeddr.com/platform.html
info@digital-ember.com

[MPP14] Moser, Michael; Pfeiffer, Michael; Pichler, Josef: Domain-speciĄc Modeling in Industrial
Automation: Challenges and Experiences. In: Proceedings of the 1st International Workshop
on Modern Software Engineering Methods for Industrial Automation. 2014.

[TK16] Tolvanen, Juha-Pekka; Kelly, Steven: Model-Driven Development Challenges and Solutions
- Experiences with Domain-SpeciĄc Modelling in Industry. In: Proceedings of the 4th
International Conference on Model-Driven Engineering and Software Development -
Volume 1: Ind Track MODELSWARD. 2016.

[To16] Tolvanen, Juha-Pekka: MetaEdit+ for Collaborative Language Engineering and Language
Use (Tool Demo). In: Proceedings of the 2016 ACM SIGPLAN International Conference
on Software Language Engineering. 2016.

[VL14] Voelter, Markus; Lisson, Sascha: Supporting Diverse Notations in MPS Projectional Editor.
In: Workshop on The Globalization of Modeling Languages, co-located with MODELS. S.
7Ű16, 2014.

[Vo13] Voelter, Markus; Benz, Sebastian; Dietrich, Christian; Engelmann, Birgit; Helander, Mats;
Kats, Lennart; Visser, Eelco; Wachsmuth, Guido: DSL Engineering. dslbook.org, 2013.

[Vo16] Voelter, Markus; Szabó, Tamás; Lisson, Sascha; Kolb, Bernd; Erdweg, Sebastian; Berger,
Thorsten: Efficient development of consistent projectional editors using grammar cells. In:
Proceedings of the International Conference on Software Language Engineering. 2016.

[Vo17] Voelter, Markus; Kolb, Bernd; Szabó, Tamás; Ratiu, Daniel; van Deursen, Arie: Lessons
learned from developing mbeddr: a case study in language engineering with MPS. Software
& Systems Modeling, 2017.

292 Daniel Ratiu, Holger Nehls, Robert Walter, Jochen Michel

