
Communication is the key – Support Durable Knowledge
Sharing in Software Engineering by Microblogging

Wolfgang Reinhardt
University of Paderborn, Institute for Computer Science

wolle@uni-paderborn.de

Abstract: Communication is undoubtedly one of the key elements of successful soft-
ware development. Especially in larger groups communication is the critical point in
gathering and forming relevant information, share knowledge and create functioning
products. Some studies stressed out the fact that informal, ad hoc communication
take up a significant part of the developers working time. Nonetheless the support of
inter-project and inter-organisational communication seems to play a minor part in the
development of IDEs and software development platforms. In this paper we discuss
communication and knowledge sharing in software engineering and introduce an ap-
proach to support social software engineering by microblogging. This approach is to
be studied in future projects.

1 Introduction

People and their interactions are the new topic of interest in the past few years. Software
developers are embedded in a social framework of colleagues, projects and organisations
and produce many types of artefacts for a broad spectrum of people. Beside of the various
needed working appliances, communication is undoubtedly a critical point in the process
of software engineering especially those in groups. Communication plays an important
role in gathering and forming of all relevant information, dependences and users needs
and wishes (Cherry and Robbilard, 2004; Seaman, 1996). Several studies stressed the
fact, that informal ad hoc communications are a very important part of the overall commu-
nication in a software engineering team. These ad hoc activities are defined as interactions
forming a logical communicative unit containing one or more sequences with obvious in-
ternal continuousness, while remaining unattached from the ambient process (Cherry and
Robillard, 2008).

Even though these ad-hoc conversations represent an important part of the daily work of a
developer they are rarely or even not supported by the instruments available for support-
ing software development processes. On the other side, spoken communication or those
via other chat tools are mostly fleeting and therefore not useful for a durable process of
knowledge sharing and further development. Within the last two years a novel mode of
communication emerged with microblogging, which could also be advantageous for the
use in distributed and co-located software teams as it can be saved persistently and is
further kept out of restrictions of formal communication. In the meantime, there are mul-
tiple open source microblogging applications available (cf. THWS, 2008), which can be

329

330

According to Nonaka and Takeushi (1995) the continuous cycle starts with the socialisa-
tion, where tacit knowledge is transferred between individuals. The next step of the cycle
is externalisation, in which the individuals make their tacit knowledge explicit to a group
or organisation by means of creating an artefact. By combination explicit knowledge is
then transferred into more matured or sophisticated knowledge. Lastly this explicit knowl-
edge is absorbed by individuals, combined with their own knowledge and experience and
transferred into new tacit knowledge. The SECI-model fosters learning and knowledge
gain by the bias of continuous externalisation and internalisation of knowledge artefacts.
Keil-Slawik (1992) describes artefacts as external memories: owing to their physical na-
ture, artifacts functions as external memory, thus facilitating communication and learning
(p. 179).

However, the process of software engineering must not be regarded as a solely technical
process of creating artefacts. A working product that fulfills the requirements of all stake-
holders is the main goal of each software development project. But it is also associated
with the application domain and the acquisition of skills and knowledge by all concerned
parties (see Magenheim and Schulte, 2006). According to Engbring (2003) the creation
of artefacts depends on cognitive and social aspects. Artefacts are regulating social as-
pects and lead to new cognitive abilities. So the experience with existing artefacts leads to
the creation of socio-facts (see figure 2). Socio-facts are structural elements that describe
laws, rules and conventions. On the other hand, the resulting artefacts of a software devel-
opment project generate new individual and organisational knowledge and necessitate the
reflection and acquisition of new skills and socio-facts.

Software
Development

Project

Creation of
Technology

Artefacts

Socio-facts Knowledge

Regulation

Inference

R
e
g
u
la
tio
n

D
e
si
g
n

In
fe
re
n
ce

D
e
sig
n

Figure 2: Technology Triangle. See Krohn (1992) and Engbring (2003).

With the SECI model and the technology triangle we demonstrated the artefact-based
transformation from tacit to explicit knowledge and its sharing in groups. The next section
describes the importance of communication in software engineering.

331

2.2 Communication in Software Engineering

Communication is the sine qua non of successful software engineering. It is an obvious
way for project members to coordinate work in software development environments. Kraut
and Steerer (1995) define communication in the context of software engineering: In soft-
ware development, communication means that different people are working on a common
project agree to a common definition of what they are building, share information and
mesh their activities.

Each individual in a project acts within several domains. The individual belongs to one
or more projects that take place in an organisational framework. The organisation itself
is placed within the outer-organisational world and interacts with other organisations and
individuals. Communication is very important for distributed teams but also for co-located,
inter-organisational relationships between different projects and as a strategy to manage
dependencies between them (Malone and Crowston, 1994).

Malone and Crowston (1994) define communication as an activity that is needed to man-
age dependencies between actors in the software development process. Communication is
a mediating factor that effects both coordination and control activities of a software project.
Without (good) communication neither the one nor the other work out as expected. Both
Herbsleb and Mockus (2003) and Kraut and Streeter (1995) as well as Perry et al. (1994)
divide communication into formal and informal communication. Informal communication
is considered as explicit communication via diverse communication channels such as tele-
phone, video, audio conference, voice mail, e-mail or other verbal conversations. Formal
conversation refers to explicit communication such as written specification documents,
reports, protocols, status meetings or source code (cf. table 1).

Table 1: Communication Types and Techniques (cf. Pikkarainen et al., 2008)

Communication types Communication techniques

Informal % Face-to-Face discussions in co-located or distributed teams

% Informal discussions by use of sundry communication channels

% Any kind of ad hoc communication

Formal % Group, steering group and milestone meetings

% Status meetings at which the personnel presents the project results

% Formal meetings by use of many communication channels

% Formal Documentation, e.g. specification documents, reports or meeting minutes

% Source Code

Even though formal communication is an essential part of each software development
project, informal communication activities seems to make the difference between just
working and great experience projects. According to Perry et al. (1994) informal com-
munication take up an average of 75 minutes per day for a developer and Seaman (1996)
support the need for informal communication if developers are to carry out their tasks

332

adequately.

Robillard and Robillard (2000) point out in their study that collaborative ad hoc activi-
ties can take up to 41% of the developers time. These ad hoc activities are defined as
interactions forming a logical communicative unit containing one or more sequences with
obvious internal continuousness, while remaining unattached from the ambient process
(Cherry and Robillard, 2008). Ad hoc communications arises when one team member
spontaneously interrupts a team-mate to ask him a question or to provide unsolicited in-
formation (p. 495).

Usually, regular face-to-face communication is considered one of the best ways to spread
knowledge and build trust in a team. For co-located teams productivity seems to rise, if
working in the same room (Espinosa and Carmel, 2003). This is because the co-location
fosters collaboration by allowing continuous interactive communication. Software quality
rises when two team members team up and collaborate in the agile software practice of
pair programming (cf. Reinhardt, 2006). New communication channels in software en-
gineering should try to impose the feeling of a common working room. This impression
bolsters the nonchalant, formal and informal use of the communication channel. Herbsleb
and Mockus (2003) call this effect the virtual 30 meters.

2.3 Microblogging

Microblogging is the latest form of blogging where messages are typically not longer than
140 characters. Templeton (2008) defines microblogging as a small scale form of blogging,
generally made up of short, succinct messages, used by both consumers and businesses to
share news, post status updates and carry on conversations. These micro-messages can be
restricted to a certain number of individuals, sent exclusively to a specific contact, or made
available to the World Wide Web. Microblogging has impressively become more and more
popular in the last two years, and Twitter1 is probably the most well-known microblogging
platform currently available on the web, when compared with other microblogging tools,
such as Plurk2, Jaiku3 and Pownce4 or the Open Source Tool Identica5 (Java et al., 2007).
While regular weblogs are mainly used for writing short essays, knowledge saving and
discourse, microblogging is proving extremely useful for the fast exchanges of thoughts,
ideas and information sharing (Ebner and Schiefner, 2008). With the Open Source appli-
cation Laconica6, there is an alternative to Twitter that is usable on own servers and in own
educational and professional settings. In the last year we have witnessed the use of such
approach as a powerful component of one’s networking activity, and more importantly
seems to become a relevant part of one’s informal learning.

Another interesting part of microblogging is the possibility of hashtagging one’s micro-

1http://twitter.com
2http://www.plurk.com
3http://www.jaiku.com
4http://pownce.com
5http://identi.ca
6http://laconi.ca

333

posts. The use of hashtags is extremely useful when sharing and contributing to a specific
topic, event or project. Hashtags are a simple way of grouping messages together with a
sign followed by a tag. With the aid of this hashtag all messages with the same hashtag
can be aggregated and regarded in a larger context.

2.4 Social Software Engineering

The term Social Software Engineering can be read by two different means, which cover
different fields of software development. If we emphasize the first two words, thus we
have [Social Software] Engineering – the process of drafting and creating social software
applications. But if we particularly have a look at the last two words Social [Software
Engineering], then we talk about social, non-technical aspects of the software development
process.

[Social Software] Engineering characterizes the implementation of so called Social Soft-
ware. The term does not focus on the engineering process as such, but the developed
social software. Thus questions like which types of social software do exist and how do
the engineering process of them differ? are in the focus of research. Furthermore [Social
Software] Engineering deals with the problem how social software can be integrated in
the IT landscape in enterprises (Enterprise 2.0) and how introductory processes and the
management of social software distinguishes from those of non-social software.

Social [Software Engineering] mainly considers social, non-technical aspects of develop-
ing software. At this point we need to ask which parts of the everyday work of a software
engineer can be described as social relevant. Communication, collaboration and informa-
tion exchange are in centre of Social [Software Engineering] research – typical results are
visualisations of communication flows and social networks. On the other hand motiva-
tional aspects and incentives belong to the second understand of the term.

3 Tools to support the Software Development Process

The everyday work of a software engineer is nowadays shaped by a multitude of instru-
ments. The most principle one is the integrated development environment (IDE), where-
with the most important artefacts – the source code – are created. An IDE is a piece of
software that provides comprehensive functionalities to support software developers. An
IDE usually consists of a source code editor, an integrated compiler, automatic build tools
and a code debugger. IDEs are designed to maximize the productivity of a developer,
because of the highly integrated build tools. Because of its complexity it takes long to
understand all facets of an IDE and the high productivity only comes after a long time of
working with it. IDEs are strongly put in the centre of focus in regards of process and
working tools optimization during the last years, so that they already contain important
features of software quality assurance as well as of monitoring. Besides the IDE the de-
veloper also operates with a word processor composing documents, reports and meeting

334

minutes. Additionally, he uses a browser for information searches as well as for use of
web-based supporting instruments such as wikis or issue trackers. Furthermore, he acts
with an e-mail-client and various instruments of digital communication. According to the
project type and structure and the organisational size the multitude of instruments often is
extended by applications for software configuration management (SCM) and application
lifecycle management (ALM).

As Pressman (2004) states SCM is a set of activities designed to control change by identi-
fying the work products that are likely to change, establishing relationships among them,
defining mechanisms for managing different versions of these work products, controlling
the changes imposed, and auditing and reporting on the changes made. So SCM is the
task of tracking and controlling all changes in a software product. Among the practices of
SCM are version control and the definition of milestones. ALM is the chaining of busi-
ness management to software engineering enabled by tools that facilitate and integrate re-
quirements management, architecture, coding, testing, tracking, and release management.
(deJong, 2008)

None of the known instruments supports the process of social [software engineering] ad-
equately. They all concentrate strongly on the procedural and organisational assistance of
the software development process and provide support to the developer primarily in for-
mal communication, the processing of tasks and the solution of problems. The support of
process-oriented interactions between the team members as well as the technical support
of informal communication does not happen in most cases. From our point of view, both
platforms for SCM as well as for ALM applications should become more social applica-
tions and further enhance the interpersonal communication, ad hoc chats and the exchange
of experiences. For us microblogging is a slight approach to realise a first social feature
(the fast informal broadcast communication). In a consequent development of a social
software configuration management platform (SSCMP) further efficient phenomenon of
the web 2.0 should be integrated including expert finding, tagging, social bookmarking,
etc.

4 Support communication of software engineering teams by micro-
blogging

As mentioned earlier ad hoc communication constitutes a main part of the daily work of
a software developer. Common organisations run multiple projects with different tasks
at the same time, which interface each other. To strengthen the inter- and intra-project-
communication, we propose to implement microblogging within software engineering.
Perry et al. (1994) and Cherry and Robbilard (2004) point out that many intra-project
issues are solved by spontaneous ad hoc communication of the project members. This
problem solving potential also exists in inter-project settings. When members of different
projects meet, they discuss problems, solutions and best practices from their projects. This
information reaches a wider organisational public and thus contribute to knowledge acqui-
sition and learning. Nevertheless these spoken communications are problematical, since

335

the information exchanged are fleeting. As long as the communication is not recorded,
transcribed or save in any other kind of persistent artefact, the information cannot be used
in other setting, from other individuals or groups.

Many software development teams use instant messengers to quickly exchange thoughts,
information and shouts for help. These messages as well are not usable during a down-
stream information search. As long as the content of the chat is not externalised in some
way7 and made explicit, the knowledge is unusable for the working and learning process.
Individual and organisational knowledge development is very tight coupled to this cycle
of tacit-to-explicit-to-tacit knowledge sharing. The SECI model of Nonaka and Takeushi
(1995) as well as the technology triangle (Krohn, 1992 and Engbring, 2003) show that
knowledge acquisition is mainly based on externalised artefacts. Only these seizable in-
formation objects allow the individual and organisational knowledge development to take
place (cf. Keil-Slawik, 1992). Each microblogging service provider saves all the sent
messages persistently. Each message stays accessible until the sender decides to delete
it8 and thus can be accessed from any person in the senders network. If we assume that
every developer is mutual connected to each other developer in an organisation, each of
the messages can durable be searched for hints, solutions or experts.

4.1 A Prototype for Microblogging from the IDE

Eclipse9 is one of the frequently used integrated development environments (IDE) in con-
temporary software development projects. Because of this, and the ease of extending the
platform with own plugins via the plug-in architecture we choose Eclipse for developing a
microblogging plugin. Figure 3 shows the first prototype of an Eclipse Twitter client.

The prototype has been created based on the Eclipse Rich Client Platform (RCP) and
integrates itself seamless in the user interface of the IDE. The credentials for the Twitter
account are once saved in the Eclipse system preferences for each developer. The plugin
creates a specific view in Eclipse with which messages via Twitter can be send. The plugin
uses the API provided by Twitter to send messages. Because of the seamless integration
of the IDE the developer does not need to leave his working environment for sending
messages but is able to directly continue on his coding work. Due to the flexible use of
hashtags in Twitter messages the developer can easily change the context (and thus the
recipients) of his message.

7There are many ways to externalise the content of such a quick chat: one of the concerned team members
could write an e-mail, a report, or just a source code comment.

8Maybe it is a good idea to store all messages redundantly to counter vandalism or accidental deletes. Of
course this one is a very critical point due to data privacy and personality rights.

9http:www.eclipse.org

336

337

338

[CR08] Sébastien Cherry and Pierre N. Robillard. The social side of software
engineering–A real ad hoc collaboration network. International Journal of
Human-Computer Studies, 66(7):495 – 505, 2008. Collaborative and social
aspects of software development.

[deJ08] Jennifer deJong. Mea culpa, ALM toolmakers say. http://www.
sdtimes.com/content/article.aspx?ArticleID=31952,
April 2008.

[EC03] J. Alberto Espinosa and Erran Carmel. The impact of time separation on
coordination in global software teams: a conceptual foundation. Software
Process: Improvement and Practice, 8, 2003.

[Eng03] Dieter Engbring. Informatik im Herstellungs- und Nutzungskontext. PhD
thesis, University of Paderborn, 2003.

[ES08] Martin Ebner and Mandy Schiefner. Microblogging - more than fun? In
Proceedings of the IADIS Mobile Learning Conference, pages 155–159, 2008.

[GC05] Tim Goles and Wynne W. Chin. Information systems outsourcing relationship
factors: detailed conceptualization and initial evidence. SIGMIS Database,
36(4):47–67, 2005.

[GR08] Judith Good and Pablo Romero. Collaborative and social aspects of software
development. International Journal of Human-Computer Studies, 66(7):481
– 483, 2008. Collaborative and social aspects of software development.

[HM03] J.D. Herbsleb and A. Mockus. An empirical study of speed and communi-
cation in globally distributed software development. Software Engineering,
IEEE Transactions on, 29(6):481–494, June 2003.

[JMT05] Michael John, Frank Maurer, and Bjørnar Tessem. Human and social factors
of software engineering: workshop summary. SIGSOFT Softw. Eng. Notes,
30(4):1–6, 2005.

[JSFT07] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. Why We Twitter:
Understanding Microblogging Usage and Communities. In Procedings of the
Joint 9th WEBKDD and 1st SNA-KDD Workshop 2007, August 2007.

[Kro92] Wolfgang Krohn. Technik-Kultur-Arbeit, chapter Zum historischen Verständ-
nis der Technik, pages 27–34. 1992.

[KS92] Reinhard Keil-Slawik. Software Development and Reality Construction, chap-
ter Artifacts in Software Design, pages 168–188. Springer, 1992.

[KS95] Robert E. Kraut and Lynn A. Streeter. Coordination in software development.
Commun. ACM, 38(3):69–81, 1995.

[MC94] Thomas W. Malone and Kevin Crowston. The interdisciplinary study of co-
ordination. ACM Comput. Surv., 26(1):87–119, 1994.

339

[MS06] Johannes Magenheim and Carsten Schulte. Social, ethical and technical issues
in formatics - An integrated approach. Education and Information Technolo-
gies, 11(3-4):319–339, 2006.

[NT95] Ikujiro Nonaka and Hirotaka Takeuchi. The Knowledge Creating Company:
How Japanese Companies Create the Dynamics of Innovation. Oxford Uni-
versity Press, 1995.

[PHS+08] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, and J. Still. The im-
pact of agile practices on communication in software development. Empirical
Softw. Engg., 13(3):303–337, 2008.

[Pre04] Roger S. Pressman. Software engineering : a practitioner’s approach. Mc-
Graw Hill Higher Education, 6 edition, 2004.

[PSV94] Dewayne E. Perry, Nancy Staudenmayer, and Lawrence G. Votta. People,
Organizations, and Process Improvement. IEEE Softw., 11(4):36–45, 1994.

[Rei06] Wolfgang Reinhardt. Einfluss agiler Softwareentwicklung auf die Kompeten-
zentwicklung in der universitären Informatikausbildung. Analyse und Bewer-
tung empirischer Studien zum Pair Programming. Master’s thesis, University
of Paderborn, 2006.

[RR00] Pierre N. Robillard and Martin P. Robillard. Types of collaborative work in
software engineering. J. Syst. Softw., 53(3):219–224, 2000.

[Sea96] Carolyn B. Seaman. Organizational Issues in Software Development: An Em-
pirical Study of Communication. PhD thesis, University of Maryland, 1996.

[SMB+04] Forrest Shull, Manoel G. Mendoncça, Victor Basili, Jeffrey Carver, José C.
Maldonado, Sandra Fabbri, Guilherme Horta Travassos, and Maria Cristina
Ferreira. Knowledge-Sharing Issues in Experimental Software Engineering.
Empirical Software Engineering, 9(1-2):111–137, March 2004.

[SN04] John A. Scott and David Nisse. Guide to Software Engineering Body of
Knowledge, chapter 7: Software configuration management. IEEE Computer
Society, 2004.

[SR05] Helen Sharp and Hugh Robinson. Some social factors of software engineer-
ing: the maverick, community and technical practices. In HSSE ’05: Pro-
ceedings of the 2005 workshop on Human and social factors of software en-
gineering, pages 1–6, New York, NY, USA, 2005. ACM.

[Tem08] Mike Templeton. Microblogging Defined. http://microblink.com/
2008/11/11/microblogging-defined/ (02.12.2008), November
2008.

[THW08] THWS. The Twitter-clone/twitter-like sites collection. http://www.
thws.cn/articles/twitter-clones.html (02.12.2008), 2008.

340

