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Abstract: Pig livestock farming has been undergoing major structural change for years. The number 

of animals per farm is constantly increasing, while competition is becoming more intense due to 

volatile slaughter prices. Sustainable, welfare-oriented livestock farming becomes increasingly 

difficult under these conditions. Studies have shown that animal-specific birth monitoring of sows 

can significantly reduce piglet losses. However, continuous monitoring by human staff is 

inconceivable, which is why systems need to be created that assist farmers in these tasks. For this 

reason, this paper aims to introduce the first step towards an automated birth monitoring system. 

The goal is to use deep learning methods from the field of computer vision to enable the detection 

of individual piglet births based on image data. This information can be used to develop systems 

that detect the beginning of a birth process, measure the duration of piglet births, and determine the 

time intervals between piglet births. 
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Addresses Sustainable Development Goal 9: Industry, innovation and infrastructure 

1. Introduction 

The structures of modern pig livestock farming, and piglet production have changed 

significantly in recent years. The situation report of the German Farmers' Association 

shows the opposite trend of a steadily decreasing number of farms with a simultaneous 

increasing number of sows held per farm [De20]. A total of 70% of all sows housed in 

Germany are kept on the largest 2,000 individual farms, each with 250 breeding sows per 

farm. Meanwhile, the slaughter price has been highly volatile in recent years, which 

further intensifies competition and poses major challenges for the farmer now and in the 

future. At the same time, politics and society alike are calling for more sustainable and 

more animal-friendly husbandry [Be14], which creates additional pressure and makes 

economically profitable livestock farming increasingly difficult. These challenges cannot 

be met with conventional methods, which is why new and innovative solutions are needed. 

As a result, research in the domain of precision livestock farming (PLF) has increased in 

recent years. PLF describes systems that utilize modern camera and sensor technologies 

to enable automatic real-time monitoring in livestock production to supervise animal 

health, welfare and behaviour [Be14] [D'18]. This involves the automated acquisition, 

 
1 University of Oldenburg, jan-hendrik.witte@uni-oldenburg.de 
2 University of Oldenburg, johann.gerberding@uni-oldenburg.de 
3 University of Göttingen, clara.lensches@uni-goettingen.de 
4 University of Göttingen, imke.traulsen@uni-goettingen.de 



 

processing, analysis and evaluation of sensor-based data like temperature, humidity, NH3 

or CO2 concentration [Co18] as well as image and video data [Ch20]. These distinct types 

of information and data sources hold the potential to enable data-driven assistance systems 

that support farmers in their daily work and would help them adapt to the constantly 

changing conditions in sow livestock farming. 

To build such systems, methods are first needed that allow the automated processing of 

these types of data streams in the form of image, video, and sensor data. Video and image 

data alone can be used for a variety of PLF related use cases, many of which can already 

be found in the literature. For example, methods from the field of computer vision (CV) 

can be utilized to detect changes in activity of sow behaviour during final gestation 

[Kü20], which contains valuable information for interpreting the sow's behaviour and 

could be used for various subsequent processes. Similarly, Lao et al. investigated the 

automatic behaviour detection of lactating sows based on image data [La16]. Especially 

the image-based detection of objects in the context of PLF poses a particular challenge 

with various problems such as the grouping, overlapping and occlusion of animals, their 

different postures, orientations and positions, as well as constantly changing 

environmental factors such as different lighting conditions, soiling of animals or occlusion 

caused by objects in the pen. Due to their ability to generalize, the use of deep learning 

(DL) methods from the field of CV has been proven effective in addressing these 

challenges. 

One topic area that has not yet been considered in the literature using these techniques is 

the birth monitoring of sows. Various studies in the field of birth monitoring have already 

proven that constant and targeted observation can reduce piglet loss during the birth 

process [Ho95]. White et al. [Wh96] were able to reduce piglet losses from 18.2% to 

10.1%, through targeted birth monitoring based on a custom protocol. However, intensive, 

permanent observation of the farrowing process of individual births is not feasible in 

practice. There is a need to create systems that allow automated monitoring of birth 

processes that informs the farmer as soon as individual problems like stillbirths or 

prolonged farrowing is detected. This paper aims to lay the foundation for the development 

of such systems by developing a model for automated birth detection based on video 

streams. 

The paper is structured as follows: First, the current state of the art in birth monitoring in 

sows will be presented. The primary focus lies on papers that apply DL models and 

architectures as well as their respective performance. This is followed by the introduction 

of the approaches for automated frame-based birth detection considered in this paper. 

Subsequently, a description of the workflow for data collection, preparation and analysis 

as well as model selection for each respective approach will be presented. In addition, the 

data sets created for each approach are described, as well as the test environment in which 

the different models were instantiated, trained, and evaluated. To conclude, the current 

status of this research is described. Here, the problems and challenges are addressed, 

potential solutions are presented, and the future proceedings are described in more detail. 



 

2. Related Work 

There are currently no papers available which have addressed the topic of automated birth 

detection based on DL methods from the field of CV. So far, the literature has considered 

use cases that address the automatic detection of different body conditions of the sow as 

well as use cases that are located before and after the actual farrowing event. In terms of 

body condition, Cang et al. [Ca19] use a custom Faster-R-CNN with an additional 

regressive branch for initial sow detection and subsequent weight estimation with an 

average absolute error of 0.644 kg and a relative error of 0.374%, while Huang et al. 

[Hu19] apply convolutional neural networks (CNN) to determine body condition scores 

of individual sows. Behaviours such as nest building, which can be observed prior to the 

actual farrowing, have been addressed in the literature by using accelerometer data from 

sensors to classify nest building behaviour with a generalized linear model, achieving an 

accuracy of 85% on the applied test set [Oc15]. Kasani et al. use different DL architectures 

to detect and classify sow posture into laying left, laying right, sitting and standing. The 

authors evaluated variations of  DenseNet, VGG and Inception architectures as well as 

MobileNet based on a custom data set, in which the DenseNet121 achieved an accuracy 

of 99,83% in the classification of sow posture [Ka21]. However, most papers in the 

literature address the automated behaviour and posture detection of lactating or nursing 

sows [La16], [Wa21], [Ya18], [Zh18], [Zh20a]. Zheng et al. [Zh20b]for example use 

Faster R-CNN for sow posture classification into standing, sitting, ventral lying and lateral 

lying and achieve a mean average precision (mAP) of 0.927, while Zhang et al. [Zh19] 

apply a combination of MobileNet and SSD network for sow behaviour detection in 

drinking, urinating and mounting behaviour with an accuracy of 0.965, 0.914 and 0.923 

respectively and an overall mAP of 0.934. 

We found one work in progress paper which introduces an embedded system to monitor 

farrowing, in which the actual birth detection of piglets is considered. Silapachate et al.  

[Si18] applied histogram equalization, background subtraction and edge detection for 

image pre-processing and plan to apply histogram of oriented gradients, different machine 

and DL models like support vector machines or CNNs to train a binary classification 

model that “distinguish video frames with a newly farrowed piglet and those without”. 
The method presented in this paper differs in the following aspects: 

• The piglet birth itself should be classified. Unlike Silapachote et al. [Si18], this 

should not be based on a newly detected piglet in the pen, but on the distinctive 

visual features in the area of the vulva during the birth event. 

• In addition to the binary classification approach, the use case will also be addressed 

based on an object detection approach by using bounding boxes to recognize, 

localize and classify the farrowing event. 



 

 

Fig. 1: Overview of approaches 

3. Approaches for farrowing detection 

Automated detection of a single birth event in the overall farrowing process is defined as 

both an object detection as well as an image classification use case. Object detection 

describes the detection and localization of objects of a defined class by enclosing bounding 

boxes around the respective object in the image, while image classification describes the 

task of assigning a given image to a defined label or class [Wa19]. From a system point 

of view, the basic idea is to split a given video stream into single frames and classify on 

each frame whether a birth event is taking place or not. Fig. 1 describes this process. 

Depending on the investigated method, the image data is processed differently. In the case 

of the object detection approach, the birth of a piglet is detected and localized using 

bounding boxes. Frames in which the object detection model predicts a bounding box with 

high confidence therefore in theory contains a farrowing event, frames in which no 

bounding box was placed correspondingly do not contain a birth event. In the case of the 

image classification approach, the images are processed as a whole and classified into 

birth and no_birth as a binary classification task. Both approaches have immediate 

advantages and disadvantages in terms of implementation and data preparation. While data 

preparation for an object detection task requires manual placement of bounding box 

annotations on each image, preparation of the image classification dataset only requires 

the categorization in one of the two defined classes, which can be done much more 

efficiently. However, the bounding box annotation provides a direct bounding of the 

context to be considered within the image, which is beneficial for the actual detection and 

localization of the birth event. Since the image classification model processes the image 

as a whole, the corresponding approach does not have this property, which could make the 

classification of the frames more difficult. Data preparation, dataset creation, model 

selection and evaluation are performed individually for each approach. 



 

4. Materials and methods 

4.1 Data Collection 

To address the considered use case of frame-based automatic birth detection, an 

interdisciplinary data collection workflow has been defined to obtain the necessary data 

basis for dataset creation, model training and evaluation. Within the DigiSchwein project 

[Ga21], camera recordings of individual birth processes of sows are recorded and stored 

on a data platform. So far, experiments were conducted between May and October 2021 

at the agricultural research farm for pig husbandry of the Chamber of Agriculture Lower 

Saxony in Wehnen. Of the planned 96 farrowing processes, 26 have already been 

conducted and recorded. So far, six of these farrowings were analyzed. To expand the 

database, four more farrowing processes have been added that were recorded within the 

InnoPig project at the agriculture research farm Futterkamp (Chamber of Agriculture in 

Schleswig-Holstein, Germany). Each farrowing pen was equipped with a commercial 

camera system (AXIS M3024-LVE Network Camera) which was installed in top view 

above the rear part of the sow. Each sow was recorded during the entire farrowing and 

lactation period. The videos from the DigiSchwein project were recorded at 10 fps, while 

the from the Futterkamp research farm have 5 fps. Both video recordings have a resolution 

of 1280x800. These recordings were analyzed by animal scientists to provide time stamps 

indicating the points in the video at which a birth event occurred. The evaluation of the 

video files was performed by using the open source Behavioral Observation Research 

Interactive Software (BORIS) [Fr16]. The starting point of the continuous observation was 

an hour before the beginning of each farrowing process which was defined as the birth of 

the first piglet of a litter. Video observation stopped at the end of the post-partum phase. 

The annotated time stamps in the BORIS software contain the start and end points of 

individual birth events, which are then used to extract the corresponding frames from the 

video recordings in which the respective birth event was identified. Each frame was then 

manually reviewed to determine if a birth event could be detected so that farrowing events 

could be accurately described on a frame-by-frame basis. A frame was annotated as soon 

as the content matched the following criteria: 

• Visibility of parts of the newborn piglet in the area of the sow's vulva.  

• Visibility of the expansion or extension of the sow's vulva.  

• A combination of both criteria. 

Fig. 2 shows an example of each of these criteria. In total, a number of 176 single birth 

events were extracted from the collected recordings, which were subsequently used for 

data analyses, exploration, and preparation. 



 

 

Fig. 2: Example of birth definitions 

4.2 Data Exploration 

Exploratory data analysis was conducted to extract specific indicators and key metrics 

about the respective farrowings. The duration of individual piglet births as well as the time 

intervals between the birth of two successive piglets were extracted and examined as 

relevant indicators and are presented in Fig. 3. The results show that a substantial 

proportion of piglet birth durations are within the range of one to five seconds. Frame-by-

frame analysis of birth events has also revealed that birth events are less than one second 

long. At 5 or 10 fps, this would mean that the shortest observed birth event of 0.8 seconds 

is 4 or 8 consecutive frames. At the same time, there are also significant outliers when 

considering the duration of individual births. Cases were identified in which a single birth 

event birth event was up to 24 seconds long. Conversely, this means that these partial birth 

sequences are up to 120 and 240 frames long at 5 and 10 fps, respectively. The same 

applies to the time intervals between individual birth events in the overall farrowing 

process. It can be observed that most of the intervals are between 10 and 20 minutes long, 

while there are also exceptions in which the intervals are up to two hundred minutes long. 

This information can be used to define specific thresholds at which the farmer could be 

informed about, for example, delayed subsequent births or similar complications. Within 

the DigiSchwein project, further farrowing processes will be analyzed and examined so 

that this database can be steadily expanded over time. 

Fig. 3: Data Exploration 



 

4.3 Model Selection 

The model selection for the respective approach was conducted by defined selection 

criteria. These criteria are based both on models and architectures that were already used 

in literature as well as on the requirements for PLF systems that have been mentioned in 

the PLF literature. The following criteria were defined: 

• Prediction accuracy: The prediction of the respective models should be as accurate 

as possible [No19]. 

• Prediction speed: Model inference should be in real-time [Le19]. 

• Cost efficiency: The respective models should be as resource efficient as possible 

to allow a potential deployment to low cost hardware [Ba12]. 

The website paperswithcode5 provides an overview of all published real-time object 

detection architectures and their benchmark results on the COCO test-dev, a popular 

dataset on which model performance is evaluated and benchmarked. This overview served 

as a basis for selecting the object detection model as well as the image classification model. 

The following models and architectures were selected for the image classification and 

object detection approach: 

EfficientNet: EfficientNets are among the top performers in image classification on 

benchmark datasets such as ImageNet, while being smaller and faster than other 

architectures such as ResNet or Inception [Ta19]. At the core, EfficientNets are based on 

a traditional CNN architecture. By applying the introduced compound scaling method to 

uniformly scale network depth, width and resolution as well as a neural architecture 

search, different EfficientNet variants were created depending on the selected compound 

coefficient [Ta19]. In the context of this paper, EfficientNet-B0 was used since is the 

smallest of the EfficientNet variants and therefore fits the specified criteria. 

YOLOv5: Since the YOLO architecture has already been used in the PLF literature for 

various use cases [Al20a], [Sh21], [Le19], has high performance, an active developer 

community and also meets the defined criteria as it  has a fitting balance between speed, 

performance and hardware requirements, it was selected as the object detection model for 

the initial prototyping process. YOLOv5 is the latest instalment of the YOLO architecture, 

but there is currently no official paper for this version. The latest paper release is YOLOv4 

by Bochkovskiy et al. [Bo20], which applies specific methods and concepts summarized 

under the terms bag of freebies and bag of specials to improve accuracy and execution 

speed compared to YOLOv3 and other architectures such as EfficientDet. The comparison 

of the two official implementations of YOLOv4 [Al20b] and YOLOv5 [Jo21] resulted in 

the selection of the YOLOv5 implementation, as it was more suitable for the context of 

this paper. 

In addition to EfficientNet for the image classification approach, following architectures 
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have been evaluated as well: ResNet [He15] and SwinTransformer [Li21]. ResNet 

represents the baseline approach in various PLF related publications, while 

SwinTransformer, based on the Transformer architecture [Va17] is currently the baseline 

for various state of the art models in the natural language processing (NLP) as well as the 

CV domain. 

4.4 Dataset and test environment 

Overall, a total of 3.216 images were extracted from the 176 individual birth events of the 

examined farrowing processes, in which a birth event could be detected based on the 

defined visual criteria in Sec. 4.1. These were used as the foundation to create the training 

and test dataset for the object detection as well as the image classification approach.  

Object detection dataset: In total, all 3.216 images were annotated with bounding boxes. 

The open source tool Labelme was used to annotate the images for model training and 

evaluation [Wa16]. 

Image Classification dataset: For the classification approach, different sampling 

strategies were conducted for frame selection. The best model performance was achieved 

by using data sets that were generated using of a hard sampling strategy based on inspired 

by Shrivastava et al. [Sh16]. Based on the assumption that frames immediately after and 

before a birth event are more difficult for the model to classify, a total of 3.216 negative 

examples were included to the image classification dataset in addition to the 3.216 positive 

examples, with one-third of the 3.216 negative examples representing frames found 

immediately before and after a birth event. This results in a dataset containing 6.432 

images. 

Both data sets were split into train and test set using an 80/20 ratio. To ensure that the test 

set contains only or limited data that the respective model has not yet seen, images of two 

birth processes were used exclusively for testing purposes and are therefore not included 

in the training data set. Both data sets were split into train and test set using an 80/20 ratio. 

To ensure that the test set only contains only data that the respective model has not yet 

seen, images of two complete birth sequences were used exclusively for testing purposes 

and are therefore not included in the training set. 

Model training was performed on a desktop workstation with two Nvidia RTX 3090 with 

24 GB VRAM each, a Threadripper 3960X and 64 GB RAM. For the object detection task 

of, the YOLOv5 implementation of Jocher et al. [Jo21] was applied. Standard parameters 

were used for training. The model was trained for 20 epochs with a batch size of 16 and 

the images were scaled to 640×640. Based on the selection criteria, the smallest 

checkpoint, YOLOv5s, was used for initial training and to enable transfer learning. 

For the image classification task, the PyTorch Image Models [Wi19] framework was 

applied for model training and testing. Images were resized to 224×224 pixels and model 

training was set to 20 epochs with a batch size of 64 and a learning rate of 0.0001. Cross 



 

entropy loss was used as the loss function, Adam [Ki14] for the optimizer. Image 

augmentation was also applied by randomly rotate the image within a given degree, 

horizontal flipping, RGB-shifts as well as changes in brightness and contrast. 

4.5 Challenges and limitations 

At the current state of this research, there are several challenges and limitations that may 

limit the generalizability and transferability of the results of this paper, which will be 

addressed in this section. The data recording was conducted in several pens, but since the 

pens are all located at the Wehnen site in the Lower Saxony Chamber of Agriculture and 

are therefore very similar in structure and visual layout, both data diversity and 

transferability or generalizability could be limited. This cannot be resolved by adding new 

training data to the already annotated dataset presented in this paper, unless video 

recordings from other pens would be added to the dataset. Furthermore, the annotation 

effort to create the training dataset is very high. First, birth recordings, which are usually 

several hours long, must be analysed by skilled personnel and birth starts or other 

important events must be tagged. Then, the individual images extracted from these tagged 

timestamps must also be annotated manually, which can, depending on how the data 

should be annotated, take several seconds per image. In this case, either with bounding 

boxes to create an object detection dataset, or with the respective class to create an image 

classification dataset. Although the manual labelling effort required to annotate the images 

with bounding boxes could be reduced by having the previously trained algorithm pre-

label the unlabelled data and then manually inspect it, however, the manual inspection of 

the video recordings will be difficult to substitute. 

5. Current results 

The results for both the object detection as well as image classification approach are 

summarized in Tab. 1. So, far, the results show that none of the examined approaches can 

produce convincing results. In the image classification approach, the best model achieves 

an F1-score of 67,06% on the test set, which is clearly insufficient for operational usage. 

The same can be observed with the object detection approach, where an AP of 0.577 and 

an overall mAP 0.246 of can be achieved. Compared to the precision, the low recall also 

shows that the model has difficulties in detecting actual positive samples in the test set. 

Although the EfficientNet has by far the smallest number of parameters compared to the 

other models, it achieved the best accuracy on the test set with a value of 66.20% in the 

classification task. Considering the much higher number of parameters, the 

SwinTransformers perform on average worse compared to the other models. The deficient 

performance of both the image classification approach and object detection approach can 

be explained as follows: 

 



 

• Insufficient data basis. 

• Both the image classification approach and the object detection approach are 

inadequate. 

• A combination of both. 

 

Tab. 1: Overview of results 

The former could be confirmed by the fact that all models evaluated in this paper showed 

signs of overfitting. This could be a signal for an insufficient data basis. The second could 

be confirmed by the fact that the considered use case is too complex to be solved with 

these simple approaches. The video analyses have shown that certain behavioral patterns 

can be recognized in the sow shortly before the expulsion of a piglet, e.g., the flapping of 

the tail or the stretching of the rear legs. The results so far give reason to believe that these 

patterns, as well as the associated temporal context, need to be considered in the detection 

of birth events. In the further research development, these aspects will be further 

investigated and elaborated. The analysis and evaluation of additional farrowing processes 

will show whether the problem of insufficient performance is due to the data basis or 

whether novel approaches must be considered in order to effectively detect birth events 

based on image data. Consideration of other model architectures to capture temporal 

context and identified behavioral patterns based on, for example, action recognition 

models could also be explored in this context.  

Image Classification 

Model Inference Time (s) Parameters 

(Mio.) 

Accuracy Precision Recall F1-

Score GPU CPU 

ResNet50 0.004 0.035 23.51 64.93 % 71.41 % 63.22 % 67.06 % 

EfficientNet-B0 0.007 0.018 4.01 66.20 % 59.72 % 68.61 % 63.86 % 

SwinTransformer 0.012 0.121 86.74 64.51 % 64.22 % 64.59 % 64.41 % 

Object Detection 

Model Inference Time (s) Parameters 

(Mio.) 

Precision Recall APIoU=0.5 mAP 

GPU CPU 

YOLOv5 0.002 - 7.01 0.856 0.463 0.577 0.246 
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