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Abstract: This paper presents two optimizations of the master-slave paradigm which
provides more robustness. The former uses a mobile master which randomly jumps
from node to node in order to dispatch the bandwidth load during the application exe-
cution. The latter aims to fully decentralize the paradigm like peer-to-peer systems.
We present and experiment our new schemes on an application dedicated to test gene-
ration used in protocol engineering. We show that they can help for unknown dynamic
environments where no information is given about nodes configuration.
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1 Introduction

The Master-Slave paradigm is a well-known concept used in distributed computing for
decades. The master distributes works to several slaves for computing. Whenever a slave
ends its computation, it sends back results to the master or to some repository. Actually,
most of distributed computing environments leverage this concept to distribute the load
across the network. Performances are very interesting for some types of application from
which parallelism can be expressed as multiple independent tasks.

Numerous scientific applications use the master-slave paradigm and lack optimization for
new dynamic environments as the peer-to-peer ones, Internet, etc. Such networks con-
stantly evolve and decrease the relevance for using the master-slave paradigm according
to load balancing aspects as well as robustness ones. Indeed, it is hard to compute efficient
chunk size for works which have to be given to the slaves. Too small chunks will produce
bandwidth overhead and too large ones provide computing overhead. On other hand, the
fixed location of the master naturally becomes a soft spot. To overcome some of these
downsides, we suggest to move the master in a randomly way on the network to enhance
the robustness of the paradigm. Finally, a full decentralization is proposed through a total
replication of the master behavior on all the network nodes.

The structure of this paper is as follows : section 2 recalls some relevant works done in
the field of load balancing for the master-slave paradigm. Section 3 describes the two
schemes that we have studied to cope with dynamic and heterogeneous environments.
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Some preliminary experiments are exposed in section 4 where performance results are
given. Finally, section 5 concludes and details future works to complete this study.

2 Related Work

Load Balancing for Master-Slave distribution is an important field in where a lot of works
have been done. Bellow, we describe some known studies in this area. Heymann et al. [HSLL04]
present an adaptive distribution strategy which optimize two criterions : efficiency, that is
the optimal number of slaves set up according to the application speedup, and the make-
span, by monitoring execution time for each distributed work over iterations (time splits).

An asymptotic optimal scheduling algorithm is given in [BLR03] for indivisible tasks
following a linear cost model. The optimal number of slaves is solved with a linear pro-
gramming theory and is used in the computation of the optimal number of tasks. Another
complementary study, Almeida et al. [AGM06] derive the scheduling problem in a task
allocation problem [IK88].

[Hag97] designs a sophisticated heuristic relevant for homogeneous environment that uses
mean and standard deviation with the execution time of a processor to compute the batch
element size. Despite the high complexity, this algorithm gives better results than others.

In some similar way, Cesar and al. [CMSL06] adjust in a regular way a ratio which gives
the size of non-allocated elements from a batch work using predictive formulas.

Yang and al [YSF03] suggest a scheduling algorithm for loosely coupled applications by
estimating the average load of a processor from its history. This algorithm is more efficient
than ones given in [Dai02] which leverage the NWS service[Wol98, WSH99] to estimate
processors load.

We suggest two schemes that enhance traditional ways to cope with load balancing in a
Master-Slave environment and allow this class of application to become more decentrali-
zed. The former is an adaptation of the original paradigm in which the master moves. The
latter emphasizes the actual trend used in decentralization processes : a load balancing
emergent property results from local nodes interactions.

3 Incentives and Model

3.1 The master-slave paradigm and its drawbacks

The Master-Slave algorithm is well known in distributed programming and is commonly
described as follows : one process performs an administrative role by allocating indepen-
dent subtasks (the whole is the entire work to be done). In general, results are gathered on
the master but can be stored on other repository (see Figure 1). More formally, a process
pm divides work W in some independent works wn with n ∈ N∗ which are sent to k
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process pk with k ∈ N∗.

Abbildung 1: The Master-Slave Paradigm

As emphasized by Crutchfield and Mitchell [CM94], centralized applications exhibit three
major drawbacks with respect to :

• the speed: a central coordinator can be a bottleneck to fast information processing,

• robustness: central failure destroys system structure,

• balanced resource allocation: the main controller draws a lot of resources.

These problems can arise on all Master-Slave schemes which limit the use of this paradigm
on dynamic systems. For sake of reusability, we suggest some mechanisms to overcome
these drawbacks.

3.2 The mobile Master-Slave paradigm

The mobile Master-Slave paradigm consists of permanent move of the master across the
network. The paradigm can be formalized as above :

Definition 3.1 (Mobile Master). The mobile master is an administrative process pik
hosted

by some resource Hk which must achieve coordination and distributes the work W =
w1, . . . , wj over a set of processes p = p1, p2, . . . , pn respectively hosted by Hi(1 ≤ i ≤
n).

By moving the coordinator during the application execution, the resource allocation is
shared along the whole process over the nodes of the network. Furthermore, bandwidth
allocation changes continously during the application execution and de facto, inherently
shares in a balanced way the bandwidth between all computational resources.
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Definition 3.2. We call trajectory T of the mobile master, the ordered set of hosts which
possessed the administrative process.

New masters are elected randomly. The current master randomly selects the new master
after a fixed period of time (time frame). Each computational resources keeps in a list of
master locations. To ensure a minimal fault tolerance, soft state can maintain the system
consistency : if for some reasons, the current master is not reachable, the previous one is
reached in order to re-elect a new one. To enable such functionality, our computational
resources store the master trajectory during our application execution.

Although our paradigm does not use the full peer-to-peer paradigm, it turns out to make the
system more balanced. In fact, all system agents share the same capabilities. An example
of such a system can be seen in Figure 2.

Abbildung 2: The Mobile Master Paradigm

Unfortunately, in such case, our scheme is not efficient. Moving too much data can strug-
gle the overall performance of the system. For this reason all data relevant to the master
computations are replicated on each slave. Thereby, just work index can be used to de-
termine the new data which has to be processed by a slaver. So, very small information
need to be moved whenever a new master is elected. Then results have to be stored on any
repository on the the master.

Proposition 3.1. If the whole work W = w1, . . . , wj is already on each host then the
work index i ∈ [1..j] is sufficient to characterize the task to be handled by a slave.

Definition 3.3. We call trace of the mobile master the set of works wi(1 ≤ i ≤ j) which
have already been distributed and processed.

Corollary 3.1. If propositon 3.1 holds, then the trace of the mobile master can only be its
work indexes.

The model presented above is rather simple. More complex mechanisms can be imple-
mented to leverage the load balancing techniques described previously in our related work
section (see section 2). These schemes often keep information computed from scratch
about nodes in the network to achieve their goal. In this case, the masters can create their
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own subnetwork by binding each other and update1 themselves on a regular way. All in-
formation is then centralized in this Master Network. So, such a scheme virtually allows
almost all the load balancing scheme described in section 2 to be used with our mobile
master paradigm without too much transformations.

Proposition 3.2. The more the masters we have, the more the application gains in robust-
ness.

Beweis. More formally, let p be the probability for a node in the network to be flawed.
N is the cardinal of the network and thus, the probability for a node to be the master is
n
N where n is the total number of different masters used during the application. A master
is unreachable with probability p n

N . Finally, the probability that a node fails to find the
master is (p n

N )k with 1 ≤ k ≤ n, the actual number of ex-masters. We notice that this
probability lowers whenever the master moves inducing a more robust application to each
move.

3.3 Full Decentralization

Our previous scheme uses mobility to overcome problems which arise in centralized app-
lications whereas our new one emphasizes ubiquity. To fully decentralize the Master-Slave
paradigm, we propose to replicate the master process on each nodes in the network.

Definition 3.4 (Decentralized Masters). Decentralized masters are computational resources
Hk which bear an administrative process pk and which have their own batch of works Wk.

Full peer-to-peer applications are the ones for which each peer is a decentralized master.
So, load balancing becomes a more challenging task because each slave becomes its own
master and because the data has to be initially at some node, it has to be spread over the
network by load balancing mechanism. Bahi and al.[BCV05] have proved that synchro-
nous distributed load balancing can be used on dynamic networks. We propose to use the
GAE algorithm to distribute works of the batch pool between all network nodes.

3.3.1 The GAE algorithm

The GAE algorithm derives from GDE algorithms used in [HLM+90]. These algorithms
find an edge coloration of the overlaying communication graph G(V,E), where V is the
vertices set and E, the edge set, and uses edge color as dimension to balance the load. The
graph G(V,E) is transformed in a k-color graph Gk(V,Ek) where Ek is a set of 3-tuples
{i, j; c} with (i, j) an edge of E and c, the color of the edge (i, j) (0 ≤ c ≤ k − 1).
At time t, each node balances along one dimension with its neighbor its load

w
(t+1)
i =

�
w

(t)
i + λ(w(t)

j − w
(t)
i ) if ∃j such that {(i, j); c} ∈ Ek

w
(t)
i otherwise

(1)

1Note that this update can be full or partial according to our objectives
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The parameter λ is empirically fixed according to the network topology.

In order to use this algorithm in our decentralized scheme, load has to be considered as
the size of the batch and nodes swap a part of this batch between each other to balance the
load in the network. This algorithm does not take into account the fault tolerance aspect.
However, this problem can be solved through batch elements replication.

We give here our interpretation of this algorithm that joins the current mainstream for mas-
sive distributed computations, that is Emergence and Self-Organization [Joh06, SGK06,
WH04]. It is said that emergent properties are necessary to compute at massive scale when
central coordinators (servers) cannot cope with the high load they encounter. These pro-
perties are obtained through local interactions between all agents which give at the macro-
level the desired properties for the global system. For example, ant-based algorithms le-
verage this paradigm as well as many other complex systems that can be found in life.
Wolfram[Wol02], through cellular automata, studies this principle and notably defines a
class of these systems corresponding to complex ones (class IV) that can even simulate
life. The GAE algorithm can be seen as local interactions from each node which balances
its load locally. As a consequence, the distributed application turns out to be well balanced
w.r.t the load.

Abbildung 3: Full Decentralized Master-Slave Paradigm

4 Experimentation

We experiment our decentralization scheme on a distributed application used for test se-
quence generation [GDFH06]. This application computes UIO (Unique Input Output)
sequences[SD88] used in conformance testing in a distributed manner. To test a system,
its specification have to be described by a deterministic automaton. Computed from the
automaton, unique sequences of transitions which characterize controllable states (states
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on which the user can act) are drawn on the system implementation in order to detect in-
correct behaviors. The distributed test generation application leverages the master-slave
paradigm : the master distributes to computational resources: automaton and states for
which unique test sequences have to be found when they exist.

Implementation is done through the ProActive API [BBC+06] which leverages the power
of the active object model. Active objects can move freely accross the network and possess
their own execution context. They can be accessed by any other process or object owned
by the application. Furthermore, several mechanisms (pointer redirection, address update,
etc.) ensure active object consistency whenever they move on the network.

4.1 ProActive

The ProActive framework provides the active object model used to implement our app-
lications. An active object is a distributed object bound to its own thread and to a list of
possibly remote methods calls to be processed. Indeed, each remote call to an active object
is asynchronous, that is, the caller continues its execution flow until the end or some barri-
er mechanism. The request is put in a list of pending method calls in order to be processed
later (by default, in a FIFO manner) or consumed according to a user-defined strategy. At
the caller, each remote procedure result is bound to an abstraction, a future, which empo-
wers asynchronicy in the application. Accessing futures only puts synchronization bareer
the program if the remote procedure results are not yet provided by the active object. This
synchronization mechanism is also called wait-by-necessity.

4.1.1 The Mobile Master

Our implementation of the mobile master for test generation use three active objects :

• the master, the process which distributes controllable states to the computational
resources,

• the slave, the computational resource which computes unique sequence from the
received controllable states,

• and the storage, which keeps the unique test sequences found at the slaves.

As described previously in section 3.2, the mobile master periodically moves on each slave
using the ProActive mobility primitives. We fixed empirically each move to be done after
10 seconds. Moreover, each slave stores the master trajectory, that is, it keeps each master
address during the test generation. If for some reasons, the master cannot be reached, slaves
contact the previous slave which hosted the master in order to respawn the administrative
process. We fixed a quorum of 70% of slaves to contact the ex-master before it can respawn
the master. This let suppose that we assume a connected network without more than 30%
of unreachable nodes.
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4.1.2 The Decentralized peer-to-peer application

In this implementation of the distributed test generation, each peer inherits the master
capabilities. This yields to an active object peer for each computational resource on the
network. As seen previously, an active object storage is used to store unique sequences
found by each slave. We used a third active object, the time server, to synchronize the
load balancing by color. This object is also used to synchronize our greedy coloration
algorithm : each node of the network runs algorithm 1 at its turn.

Algorithm 1: Distributed Edge Coloration
Data: Set of neighbors V of node i
foreach neighbor j do

if edge (i, j) is not colored then
Take the first available color c;
/* Check if c is not already used by the neighbor j,

and update it if needed */
c = UpdateColor(i,j,c);
Color (i, j) with d.

Function UpdateColor(node i, neighbor j, color c)

if c is not available at node j then
Update c with the first available color following c;

Color (i, j) with c;
return c

The parameter λ used in equation 1 is empirically set to 0.5 and each node updates its load
with its neighbor every five seconds.

4.2 Performance Evaluation

Experiments were conducted on 10 personal computers (INTEL P4 2.4 GHZ - 128 Mo
RAM) with an OS-based Linux (FEDORA CORE 6) linked together with a switch 100
Mbps. Written in JAVA 1.5, our software uses JDK 1.5.0 as well as ProActive 3.2.

To compare our schemes, we generate several random automata whose specifications lar-
gely encompass real ones. Twenty 5000-states automata were used during these prelimi-
nary experiments for each scheme. Figure 4 shows performance comparisons between the
two methods: the mobile and the decentralized one.

The mobile master outperforms the decentralized method on our samples. First, it is due to
our testbed conditions. Indeed, our decentralized method is designed to cope with dynamic
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large scale networks whereas our network environments is small, homogeneous and fast.
Further, it suffers at starting from the edge coloration overhead which increases its runtime.
On the other side, very low communication overhead is generated for the mobile master
scheme since only work indexes (states number) are exchanged between the master and its
slave. As a consequence, this scheme tends to be optimal more especially when distributed
works are small. Last but not least, the distributed masters update their load every five
seconds along a color and de facto, our application converges more slowly toward optimal
resource allocation since works are centralized initially. Finally, some limitations hold such
as our computer memory, which cannot get very large automata like millions states ones.
In these conditions, the optimal number of computational resources can be maintained low
and benefits the mobile master scheme. Figure 5 gives the speedup of the Mobile master
application speedup (mean : 4.8) as well as the Decentralized masters one (mean : 3.7).

3

3.5

4

4.5

5

5.5

0 2 4 6 8 10 12 14 16 18 20

Sp
ee
du
p

Automaton

Mobile Master
Decentralized masters

Abbildung 5: Speedup for Mobile Master and Decentralized masters

Although our decentralized masters scheme seems to be not efficient in our experiments,
it is very likely it gains advantage in dynamic large scale networks. We simulate our two
schemes on a parallel machine (quadri-XEON 3.6 ghz - 4Go RAM). We set the number
of computational resources to 40. Unfortunately, communications exchange use the native
interface memory of the system, so bandwidth is larger than real network ones. The mobile
master scheme never succeeds to run properly. Investigations are on the way to know
whether our implementation have memory leaks or crashes because a lot of stress are put
on the system.
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5 Conclusion

We suggested in this paper two schemes that enhance the master-slave paradigm. This
paradigm tends to be inappropriate for large scale dynamic networks. Indeed, centralized
applications are be proved to not be efficient for these kind of environments. Our first sche-
me uses mobility to overcome robustness downsides known for the master-slave paradigm
in dynamic networks. The latter uses ubiquity and follows the actual mainstream which
consists of solving problems through emergent properties on large scale networks. Our
schemes were implemented on a distributed test generation application and then compared
on a small homogeneous environment. This preliminary study reveals that the master-slave
paradigm, enhanced with our schemes, can still be used in our actual networks without a
lot of modifications and opens the way to automatic transformations for this old parallel
method.

Our two schemes must be compared more thoroughly to validate our assumptions. They
have to be deployed not only on a larger and more dynamic environments but also must be
applied on others applications which leverage the master-slave paradigm. Some work is in
progress to provide a generic platform which ease automatic transformations of applicati-
ons leveraging the master-slave paradigm.
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