
Simplified Control Flow Integrity Method for

Permutated Programs

Kai Lehniger1, Mario Schölzel2, Peter Tabatt2, Marcin J. Aftowicz1

Peter Langendörfer1,3

1IHP - Leibniz-Institut für innovative Mikroelektronik
Frankfurt (Oder), Germany

{lehniger, aftowicz, langendoerfer}@ihp-microelectronics.com

2Hochschule Nordhausen
Nordhausen, Germany

{peter.tabatt, mario.schoelzel}@hs-nordhausen.de

3BTU Cottbus-Senftenberg
Cottbus, Germany

peter.langendoerfer@b-tu.de

32nd Crypto Day, 15 January 2021

Control Flow Integrity (CFI) methods are part of research for over a decade
now. Limiting a program to its intended control flow is a challenging task but
also eliminates possibilities of code reuse attacks. There are many approaches,
a lot of which include additional data and checking code. One of them was de-
scribed by Abadi, Budiu, Erlingsson & Ligatti (2009). The main idea is to insert
arbitrary but unique byte sequences, called signatures, at jump targets into the
program code, as well as a checking code before each jump. The checking code
compares the signature at the target address with its own expected signature.
The jump only happens if both signatures matches. The need for signatures
to be unique comes from the fact that duplicated signatures could be exploited
and lead to unwanted control flows, since signatures of checking code and jump
targets would match that are not part of the intended control flow.
When the program itself is not known to the attacker there are still methods for
exploitation, i.e by leaking information (Bittau, Belay, Mashtizadeh, Mazières
& Boneh (2014)) or brute forcing (Goodspeed & Francillon (2009)). However,
in that case CFI is even harder to overcome.
We present a simplified approach of signature based CFI that works as protec-
tion against return-oriented programming (ROP), with the precondition that
the attacker does not know the positions of the gadgets. This is achieved by
permutation of the program code itself on a regular basis.
Permutation forces an attacker to start guessing for concrete addresses to jump
to, making it impossible to reliably change the control flow. As a result it is
no longer possible for an attacker to exploit duplicated addresses, making the
uniqueness of signatures is not important anymore. There-fore we settle withcr
yp

to
da

y
m

at
te

rs
32

(2
02

1)
B

ei
tr

äg
e

vo
m

32
.K

ry
pt

ot
ag

,1
5.

01
.2

02
1,

on
lin

e.
do

i:1
0.

18
42

0/
cd

m
-2

02
1-

32
-2

1



the same signature for all potential jump targets. This has the advantage that
we do not need complicated control-flow analysis and can use the same checking
code for all effected jumps.
Also, for now we only focus on valid targets for function returns. This way we
can make use of the fact that the return address is an address after a corre-
sponding call instruction. Instead of inserting a signature inside the program,
we can use the call instruction itself as a signature.
In result we have a simple checking method that can be inserted into any ex-
isting binary by replacing every return instruction with a jump to the checking
code. With that we can guarantee that each return jumps to a position after a
call instruction. Of course architectural particularities can introduce additional
obstacles to overcome. With ARM and Xtensa we will show two such architec-
tures and present possible solutions for an implementation.

Acknowledgment

This work was supported by the Federal Ministry of Education and Research
(BMBF) under research grant number 01IS18065E.

References

Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson & Jay Ligatti (2009).
Control-flow integrity principles, implementations, and applications. ACM
Transactions on Information and System Security (TISSEC) 13(1), 1–40.

Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières & Dan
Boneh (2014). Hacking blind. In 2014 IEEE Symposium on Security and
Privacy, 227–242. IEEE.

Travis Goodspeed & Aurélien Francillon (2009). Half-blind attacks:
mask ROM bootloaders are dangerous. In Proceedings of the 3rd USENIX
conference on Offensive technologies. USENIX Association, 6–6.


