
OBSE – an approach to
Ontology-based Software Engineering in the practice

Andrej Bachmann, Wolfgang Hesse, Aaron Russ (University Marburg)

Christian Kop, Heinrich C. Mayr, Jürgen Vöhringer (University Klagenfurt)

Philipps-University Marburg University of Klagenfurt
Hans-Meerwein-Strasse Universitätsstraße 65 - 67

35032 Marburg 9020 Klagenfurt
{rodionov,hesse,russa}@mathematik.uni-marburg.de {chris,heinrich,juergen}@ifit.uni-klu.ac.at

Abstract: In this article we present a new approach to Ontology-based Software
Engineering (OBSE) meant for practical use in enterprises and industrial projects.
Following this approach, Software projects are no longer driven only by
requirements and models but also by one or several ontology/ies covering their
application domain. Our main thesis says that OBSE can offer similar
opportunities and benefits for re-engineering and re-use in the early phases of
software development as object orientation does for the later ones. OBSE is to be
supported by tools which integrate ontologies in the SE process. A prototype of
such a tool – based on the KCPM and EOS methodologies – is presently being
developed in a joint project of our groups.

1 Introduction

Ontologies have been introduced as a key concept in informatics in the last decade of the
previous century when the rapid growth of the internet and its services created new
demands on automated agents and similar devices which require facilitated and
encompassing access to domain knowledge of various application domains. Gruber has
defined ontology as an explicit specification of a conceptualization [Gru 95].
Applications of ontologies in Informatics comprise the fields of Artificial Intelligence,
Agent systems, Database & Information systems, Web Technology and other fields.

In the Software Engineering (SE) field conceptualisation has played a major role for long
time, e.g. during the analysis, modelling and design phases of software development,
where all relevant entities of the application domain with their features and relationships
have to be conceptualized. This way, considerable portions of domain knowledge are
elaborated in almost every application-oriented software project. Similarly, large
portions of technical and implementation-oriented knowledge are worked out during the
detailed design, implementation, test & integration phases. However, whereas object
orientation (OO) technology has led to major achievements in re-using the latter kind of
knowledge this is still a desire and challenge as far as the domain knowledge relevant for
the early phases is concerned.

Ontologies seem to be an appropriate concept for describing portions of domain
knowledge which is to be re-used across several software projects. Thus we aim for a
new approach for integrating ontologies in the SE process. Following this Ontology-

129



based Software Engineering (OBSE) approach, software projects are no longer driven
only by requirements and models but also by one or several ontology/ies covering their
application domain (cf. fig 1).

Our main hypothesis is that by combination of
Knowledge and Software Engineering techniques OBSE
can offer similar opportunities and benefits for re-
engineering and re-use in the early phases of software
development as object orientation does for the later ones.
Of course, such an approach has to be supported by tools
for software engineers who want to integrate ontologies
in their SE process.

Project
requirements

[NL]

extract

Project
knowledge

base

Model
(e.g. [UML])

Code
(e.g. [Java])

transform &
develop

implement

Domain
knowledge

base

Project
requirements

[NL]

Project
requirements

[NL]

extract

Project
knowledge

base

Model
(e.g. [UML])

Code
(e.g. [Java])

transform &
develop

implement

Domain
knowledge

base

Two major questions arise when we investigate
approaches to OBSE in more detail:

(1) What is the appropriate form (and language) for
expressing ontologies in the SE context? and

(2) How can the SE process be extended to an OBSE
process including the use and evolution of ontologies?

Fig. 1: An ontology-based
software processing

For dealing with both questions, previous work of the two groups authoring this article
can usefully be employed:

• The Klagenfurt Conceptual Predesign (KCP) method offers glossaries as an
appropriate and useful instrument to deal with ontologies in the early phases of
software development.

• The (Marburg-based) method for Evolutionary, Object oriented Software
Development (EOS) offers a Software Process model which is flexible and wide
enough to cover ontology-based processes as well and allows for a unique treatment
of software and ontology engineering processes.

In our view, the OBSE process should be a combination of both (Software and Ontology
Engineering) life cycles following some sort of rendezvous principle: Software Engine-
ering projects inherit from existing ontologies in the early (analysis and modelling)
phases and offer (parts of) their results for further ontology development and evolution.
The first step allows re-use of domain knowledge whereas the later promotes re-use of
project specific knowledge. The EOS model serves as a joint framework for defining and
supporting the OBSE approach.

Furthermore we argue that the appropriate form for including domain knowledge from
ontologies in the SE process is the glossary form making the KCP method and tools a
key basic technology for OBSE. Since glossaries are modular, flexible and easy to
handle for users, domain experts and engineers, they seem to be a most appropriate form
for documenting reusable knowledge.

In the subsequent sections, we will first briefly compare Software and Ontology
Engineering processes and then define our OBSE process model based on the KCP and

130



EOS approaches. In the last sections we will deal with tool support for OBSE and
include a rough sketch of the tool prototype under construction.

2 Software and Ontology Engineering process: brief comparison

Ontological Engineering has been advocated by Mizoguchi [Miz 98] and analogies (as
well as differences) with Software Engineering and their processes have already been
discussed, e.g. in [G-L 02] and [Hes 05]. In the following table, both fields are compared
and of some of their outstanding characteristics and properties are listed (cf. Fig. 2).

Software Engineering Ontology Engineering

Target
groups

• Software managers, engineers and
users engaged in a particular project

• Domain experts, ontology builders
and users dealing with many projects
in a particular domain

Principal
requi-
rements

• Functional requirements regarding
system procedures, correct output etc.

• Quality requirements re. user
friendliness, reliability, performance ..

• Trustability and consistency

• Compatibility and accessibility from
many projects and applications

Project
duration

• determined, limited for one project • undetermined, unlimited

Process
structure

• often sequential: phases, activities,
but also iterations and cycles

• Sub-processes for components or
increments

• mostly cyclic, cycles maybe grouped
in phases

• Sub-processes for developing or
revising subdomains

Process
models

• Waterfall, incremental, component-
based, prototyping, spiral-like

• incremental, component-based,
evolutionary

Concepts,
languages
and tools

• Use cases, natural language,
modelling & programming languages
(e.g. UML), diagrams, pseudo code

• Tools: Editors, modelling tools,
compilers

• Natural language, glossaries, tables,
semantic networks, topic maps,
conceptual graphs, ontology languages

• Tools: Ontology editors, modelling
tools

Results
and
products

• project-specific, (relatively) short-
term oriented, usable for particular
application

• spanning many projects, long-term
oriented, re-usable, "sharable" among
many organisations and projects

Fig. 2: Some characteristics of Software and Ontology Engineering

As the table shows, ontology development resembles software development in various
respects but there are also significant discrepancies between the two kinds of processes,
e.g. resulting from different target groups, contexts and requirements. For a more
comprehensive discussion we refer to [Hes 05].

131



3 KCPM: A glossary-based approach to Software and Ontology
Engineering

In order to motivate the KCP method (KCPM) as a missing link between software
requirements and software modelling/design we will briefly present our glossary
approach, the concepts and representation forms of KCPM. Afterwards the appropriate-
ness of KCPM will be discussed.

KCPM was introduced to support the requirements elicitation process. As described in
the previous section there are a lot of similarities between software engineering and on-
tology engineering. During the first phases of requirements engineering and knowledge
acquisition the developers (ontology builders and software engineers, resp.) have to
communicate with experts1. Performing this task the engineer is more like a doctor who
has to ask the right questions or like a pilot who has to check that everything is working
before he starts the engine. The paradigm of such a check list which supports the task to
formulate the right questions directly leads to the idea of using glossaries as a concept
for representing requirements. In the KCP methodology, a glossary is employed as the
central knowledge base for gathering, storing and communicating domain knowledge
during the requirements capture and modelling phases of software projects [M-K02].

In particular glossaries have the following advantages:

• Domain experts are mostly familiar with glossaries since they use them in their daily
work.

• It is easier to find a gap in a glossary-like specification (the regarding column is
empty). Thus a glossary is like a check list.

• Information that belongs together (e.g. regarding the same concept) is associated with
that concept. Thus the information is collected in a very compact manner.

• The structure of a glossary is standardised and predefined.

• The semantics of the key terms of glossaries (e.g. the column names) are predefined.

• The glossary type (e.g. thing type glossary, operation type glossary) as well as the
several columns within these glossary types provides a first classification of the
collected information.

3.1 Small set of modelling concepts

The glossary is built up by few kinds of (table-like) type descriptions the most important
of which are: thing types and connection types. In order to support the glossary building
task, linguistic techniques such as natural language text analysis are employed and
supported by corresponding tools [FKM+ 00]. Glossaries may be transformed into
conceptual models or UML-like class structure diagrams according to a set of laws and
transformation rules in a semi-automated way.

1 We assume that every person is an expert on a certain domain. In the most specific way he/she is the expert
of the tasks he/she has to do in an enterprise.

132



Thing-type is a generalisation of the UML concepts class and attribute. Thus, typical
thing types are e.g. author, book, contract as well as descriptive characteristics like
customer name, product number, product description. It seems to be easy to decide,
which of the above examples is a class and which one is an attribute, but what about a
concept used in a domain which is not well known by the designer (e.g. the concept
ICD10 in the medical domain). Following KCPM the question whether the concept is a
class or an attribute is not a primary question but this will be decided later and be
supported during the mapping process. Instead the system analyst can concentrate on
gathering additional information for that concept, which is much more important during
requirements analysis. Meta-attributes which head the glossary columns (e.g. Examples,
Synonyms, QuantityDescription) give hints to ask the right questions.

Fig. 3: Overview of the KCP meta model

Things are related within the real world. To capture this, the KCPM model introduces
the concept of connection-type. Two or more thing-types can be involved in a
connection-type. This is based on the NIAM (ORM) object/role model [N-H 89]. A
sentence (business rule) leading to a connection type could be the following: Authors
write books. The model is open for specific semantic connection-types (possession,
composition, generalization, identification etc.) e.g. An ISBN number identifies a book.

This glossary approach works similar for all the other KCPM concepts (connection type,
operation type etc.) which are described in other papers. In the meta schema concepts
and columns (meta attributes) are distinguished in the following way. KCPM concepts
are derived from the class ModelingElement and columns from ModelingComponent.

3.2 KCPM as a link between domain ontologies and SE

As was mentioned before, KCPM was introduced as a requirements modelling language.
However looking at the modelling concepts and the representation concepts of KCPM,
KCPM can be also seen as a link between Ontologies and Software engineering. In order
to motivate this assumption it has to be shown that

(1) There is a general relationship between KCPM and ontologies

(2) KCPM can be used for conceptual models in the software engineering domain.

133



To justify the first statement we need to answer first the following questions: What is the
purpose of an ontology? What are possible ontology representations?

Since Gruber’s article [Gru 95] ontology is understood as a means for knowledge
sharing. In [Gua 98] domain and task ontologies describe the vocabulary related to a
generic domain. This distinguishes domain ontology from a conceptual model where the
vocabulary has to be refined for the project specific purpose.

For the second question we have to take a look at the several representations of onto-
logies. These representations range from lexicons, notion lists, and topological maps to
formal specifications. Most often glossaries are used to describe the notions.

Comparing this with the KCPM approach we can conclude: KCPM has a representation
concept that fits very well into possible representation concepts of ontologies.
Furthermore, in the previous section the advantages of such a representation were
already stated. These advantages can also be applied to ontologies.

As static concepts KCPM offers just thing types and connection types. From our
experience in many modelling projects, we learned that the distinction between classes
and attributes is often artificial, premature or project dependent. A notion which might
be modelled as a class in one project (e.g. address, driver) might be modelled also as an
attribute in another project. If we abstract from this distinction using thing types for both
in common, then this fits much better to the ontology level where the involved parties
have to concentrate on getting a shared knowledge and understanding of a domain.

To motivate the second statement from above, we refer the reader to [M-K 02] where we
have described in detail how thing types and connection types can be mapped to
conceptual models used in the SE domain (i.e. UML diagrams). Furthermore it was
explicated in [V-M 05] that integration on the conceptual level (e.g. using KCPM) has
advantages compared to integration in the later phases of software development. This
has also a beneficial impact on the process of shared knowledge generation. If two or
more involved parties want to adjust their knowledge to a common shared knowledge it
is much better to abstract from terms like class and attributes.

3.4 General Overview of the OBSE cycle

Based on these connections between KCP glossaries, UML, and ontologies, a unification
and combination of the ontology development life cycle for a certain domain on the one
hand side and software project life cycles concerning the same domain on the other is
promising. A first glance on the combined life cycles is shown in fig. 4. The key for this
unification is the use of KCP glossaries in both life cycles: On the ontology side, the
domain knowledge is captured in a glossary before it is (partly automatically, see above)
transformed to UML or some other ontology language (OL) representation. On the
software project side, project specific domain knowledge is extracted from the
requirements after elicitation and stored in a glossary-like knowledge base which is
transformed to UML models in the described way and then further to code of some
programming language (PL).

134



In our unified process, KCP glossaries are used in order to support the requirements and
ontology engineering processes as well as the exchange between both of them. Since in
this phase requirements are mainly collected through user interviews and the study of
natural language (NL) documents, ambiguities can easily occur and lead to
communication problems. On the other hand, domain ontologies usually contain data
that is reviewed by domain experts and that describe the important concepts and
relationships of the specific domain.

These data can be used in various ways to replace or to complement information
gathered in the "normal" requirements engineering process. For example, information
that was collected through usual requirements engineering techniques might be verified
while matching it against the ontology data. This way, discrepancies between the
ontology description and the data from other sources might be identified. These conflicts
are often caused by ambiguities or imprecision in the requirements documents and must
be resolved. Moreover, the ontology data might complement the previously gathered
requirements. This can be accomplished combining the domain glossary and the project
glossary by schema integration (cf. chap. 3.3).

Ontology life cycle Software project life cycle

Ontology
(OL form)

revise

Ontology
(UML form)

transform

System version
(PL form)

Project KB
(glossary form)

System model
(UML form)

extract

build

revise

Project
requirements

[NL]

Domain
knowledge

(NL)

Ontology
(glossary form)

extract

transform

exchange
knowledge

Ontology life cycle Software project life cycle

Ontology
(OL form)

revise

Ontology
(UML form)

transform

System version
(PL form)

Project KB
(glossary form)

System model
(UML form)

extract

build

revise

Project
requirements

[NL]

Domain
knowledge

(NL)

Ontology
(glossary form)

extract

transform

exchange
knowledge

Fig. 4: Ontology and software project life cycles combined in a rendezvous manner

This combined and integrated ontology can be modified in order to meet project specific
needs. Using this ontology the project runs through the following design and imple-
mentation phases of the software development life cycle. During the final project phases
domain knowledge that has been gained during the project and which was not yet part of
the domain ontology or which should be used for its revision can be exported and then
used within an integration process modifying the original domain ontology.

4 The EOS model and its use for a combined OBSE process

4.1 Basic concepts of the EOS model

In order to obtain a uniform view on both Software and Ontology Engineering processes
as sketched above, the EOS model can successfully be used (cf. [Hes 03], [Hes 05]). It
has been developed in order to support Evolutionary Object oriented Software Develop-

135



ment and it offers a high degree of flexibility and scalability for both software managers
and engineers when dealing with complex projects which include many components and
highly concurrent development processes. Its use for Software Engineering projects has
been described in detail elsewhere (cf. e.g. [Hes 96], [Hes 97], [Hes 03]). Among its key
concepts are:

• Component-based structure and architecture-driven, uniformly structured develop-
ment cycles: Unlike most of its traditional predecessors, the EOS model binds
development cycles to the building blocks of the system architecture. All develop-
ment cycles consist of the four main activities analysis, design, implementation and
operational use – irrespective of its occurrence at the system, component or
module/class layer (cf. right part of fig. 5). This way, development processes become
highly scalable and flexible.

• Multiple, mostly concurrent development cycles and evolutionary software develop-
ment: Re-development or revision cycles may be activated and performed on demand
at any architectural level and thus system evolution is encouraged and supported by
the EOS model. Concurrent development cycles are synchronised by means of revis-
ion points, i.a. predefined points in time where certain activities have to be finished
and their results are available for review or delivery.

4.2 Ontology development described in EOS terms

Ontologies are preferably structured as hierarchies (cf. [Gua 98]), e.g. consisting of the
three levels:

• universal ontology

• discipline ontologies

• domain ontologies

Further decomposition may lead to smaller units – let us call them ontology components
(OC's) in analogy to the EOS terminology. Ontologies are in a continuous process of
evolution – this leads to the requirement of independent, often concurrent OC
development cycles. These can be well defined using the general EOS schema for
describing development cycles:

• Ontological analysis aims at defining the OC and delimiting its boundaries,
identifying potential applications, analysing the relevant terminology, building a
taxonomy, describing terms as glossary entries, and dissolving terminological con-
flicts. The analysis results in a first version of the OC glossary.

• Ontology design deals with defining a (sub-) structure of the OC, defining facts and
rules, building UML maps of the OC, check-ups and comparisons with other glossar-
ies, modifying and (re-) structuring the taxonomy and particular glossary entries,
dissolving terminological conflicts.

• Ontology implementation and integration aims at translating the OC and its elements
into a formal ontology language, checking syntax and semantics, integrating and
validating sub-ontologies, comparing and unifying conflicting terms, dissolving
terminological conflicts

136



• Ontology operational use comprises publishing the OC, checking, validating its
ingredients and asking for and receiving feedback, adapting the OC to super-/neigh-
bour ontologies, looking for requests for revision, initiating revision (if necessary).

If we consider an ontology as a hierarchy of OC's, we can use the EOS model as a
generalised life cycle model for developing ontologies of any size in an evolutionary
way: Ontology development is then a complex process of concurrent OC developments.
One particular OC may be developed in two ways: either (in a top down fashion) as part
of the (already existing) encompassing domain ontology, or (bottom up) as part of a
software project located in the concerned domain. In the latter case, the (ontology-
related) results of the project have to be integrated into the encompassing domain
ontology.

Of course, this step is not easy and is quite similar to the well-known schema integration
problem. It consists of combining the separate ontology parts to a single one by
identifying communalities and conflicts, while resolving the latter. However, the
continuous update of domain ontologies through project ontologies allows the
knowledge bases to be kept up-to-date and always relevant for further projects. Such an
approach can only be successful if the domain ontologies are of high quality and if
sophisticated and well-proven comparison and integration techniques are used.

4.3 Outline of an EOS-based OBSE process

With the above prerequisites, we can define an OBSE process as a combination of
project and ontology development cycles. We consider a software project concerning an
application domain D for which a domain ontology OD already exists. The subset of OD

which contains all definitions and explanations relevant for our project P is defined as an
ontology component OCP. An OC development cycle may be attached to OCP as out-
lined above and depicted in the left part of fig. 5.

Two so called bridges support the exchange of information between the domain onto-
logy and the software project life cycles (shown on the left and right part of fig. 5, resp.).
The first bridge (labelled by "import") is relevant in the analysis phase of the software
development process. If the resulting system enters the phase of operational use and has
proven stable enough, the second bridge to the ontology life cycle (called "export"
bridge) becomes relevant.

In particular, ontology analysis of OCP results in a glossary GLP which can be transferred
to the software project P via the import bridge. According to the EOS guidelines, system
analysis for the project P starts from requirements which delimit the scope of the system
S to be built and of its application domain D. Moreover, system analysis steps are now
supported by the imported definitions of OCP (cf. fig. 5). This way, project P profits
from previous ontology work on the domain D as aimed by the overall OBSE approach.

Ontology import may also be broken down to the component structure of S. According
to the EOS model, the system analysis and design steps for S lead to a component
structure consisting of components Xi (I = 1, …, n). Let us suppose X1 to be the
component responsible for the application domain D. Then the analysis of X1 implies
importing the definitions of OCP via the import bridge. If there are more components

137



relying on the domain D and its definitions, the same import procedure applies for all
these components.

Following the analysis steps, the software project P goes on as prescribed by the EOS
model: Components are designed, may be decomposed into sub-components and
modules which run through their own development cycles. Implemented modules are
tested and integrated to subsystems which in turn are integrated (in an incremental or
whatever way) to form the envisaged system S.

SX 1

X 3

X 4

X 2

M21

M01

M31

M02

import

export

S

X 3

X 2

M21

M01

M31

M02

OCP

exportOD

SX 1

X 3

X 4

X 2

M21

M01

M31

M02

import

export

S

X 3

X 2

M21

M01

M31

M02

OCP

exportOD

Fig. 5: System development and ontology life cycles interconnected

Operational use is the last step of every EOS development cycle – and, in particular, of
the overall system development cycle (marked by "S" in fig. 5). This step is the second
anchor point for OBSE-related actions: A review of the project and its results implies a
particular resume of its contributions to the domain ontology. If there are any significant
enhancements or modifications, these are transferred to the ontology development
process of OCP via the export bridge. Again, these contributions may be located in some
component(s) of the system S, viz. in their implementations and are to be extracted via
the project glossary.

5 The OBSE tool and prototype

The OBSE tool is intended to support software engineers who want to work along the
OBSE process. The main purpose of the tool is to combine the KCPM based ontology
development with the EOS software developing process. In the centre of this integration
are import and export bridges (cf. fig. 5 and process description above).

• For import activities, the tool provides support by transferring elements of the
domain ontology into a project knowledge base during the analysis phase.

• On the export side, information gained from a project is transferred to its respective
domain ontology via the second bridge offered by the tool. Typically this process
takes place in the operational use phase.

138



These bridges work on the glossary level. This means that the elements of the domain
ontology are transferred via import functions into the KCPM glossary of a project and
vice versa by export functions. However, often the knowledge to be transferred is not
given in glossary form but maybe, e.g. in UML form. In order to support the transfer in
these cases as well, transformations from KCPM glossaries to UML and back have been
implemented [SMK 04], [Rus 07]. These transformations ensure an indirect export of
UML models typically developed in software projects as well as the use of imported
glossary elements in projects working with UML.

In the majority of cases both import and export requires an integration of KCPM glossa-
ry entries into existing KCPM glossaries. For example, at the beginning of a project a lot
of information about the associated domain was extracted from project requirements into
the project knowledge base (i.e. a conceptual model in glossary form) [M-K 02]. This
model can be enhanced by elements from the domain ontology using import functionali-
ty of the OBSE tool. This is an integration process which requires specific merge func-
tions for glossaries (cf. [V-M 05]). The integration steps must be seen as semi-automatic.
Meaning the tool user can choose which elements are transferred, and specify the rules
that are to be used during each integration step. The export of glossary entries into the
existing domain ontology is done analogously. Since both integration functions work on
the glossary level, they have been implemented in a uniform manner in the OBSE tool.

Besides the import-export functions which are essential to the OBSE process, the OBSE
tool offers other features which support the management of glossaries on the domain on-
tology side as well as on a project knowledge base. This is not limited to graphic or
table-like views of data with integrated edit function but also incorporates a built-in and
always adjustable OBSE project description. This offers the user a help facility e.g. de-
fining roles, activities and artifacts of the process, guides him/her with iteration and ac-
tivity descriptions and combines the use of the tool with planning and designing activi-
ties of the process. By integrating the OBSE process description into the OBSE tool we
hope to promote the ability to learn and consistently use both.

One fundamental question concerns the
architecture and platform of the OBSE
tool: Which architecture would best be
suited for the tool having above mention-
ed goals in mind? For various reasons
(detailed in the following) we have de-
cided for a PlugIn based architecture,
rooted in the Rich Client Platform (RCP)
– at least for our first OBSE tool pro-
totype.

RCP is a framework consisting of a rela-
tively small core which is extendable for
specific functionality via PlugIns and
compatible with many operating systems. Fig. 6: OBSE tool structure

139



A well known implementation of RCP forms the basis of the Eclipse toolset [L-M 05].
This will be used as a platform of our prototype and allows us to construct the OBSE
tools as a collection of multiple PlugIns.

Eclipse RCP elements such as perspectives and views permit the definition of different
views on data for different roles and tasks in the process while maintaining uniform
usage and surface. This way, different PlugIns appear to the user as a almost monolithic,
homogeneous system. The Eclipse Process Framework (EPF) plays a key role in the
OBSE tool development and the implementation is eased by its RCP based structure. It
allows a description (with roles, activities, artifacts etc.) of the OBSE process to be
generated and published via the tool. Another advantage of the framework is the ability
to adapt process descriptions to one's own needs. Should it be necessary to define addi-
tional tasks or replace artifacts with its own variants in a project that is being carried out
with OBSE this can be achieved with the help of the EPF underlying process part of the
tool. This supports the scalability of the OBSE process, i.e. it makes it usable for small
as well as for large projects.

We see additional advantages in other frameworks from the Eclipse Foundation. This
includes the Eclipse Modeling Framework (EMF) and Eclipse Graphical Framework
(GEF). The KCPM meta model is defined with EMF. The classes of the meta models
used by other PlugIns are generated by this model, including interfaces and facade
classes. This provides the consistency of the KCPM meta model and the code which
belongs to it. GMF is a powerful tool for implementing the graphical representations of
glossary entries (cf. fig. 6). The OBSE-Tool prototype, which is currently being
developed implements the above mentioned concepts and will presumably be finished by
end of 2007.

6 Outlook: OBSE and MDA

Model Driven Architecture (MDA) [OMG 03] is a model centred approach which is
expected to play an growing role in future SE. In the terminology of MDA three
different types of models are defined: Computation Independent Model (CIM), Platform
Independent Model (PIM) and Platform Specific Model (PSM). The idea is to engineer
an abstract model which then can be used to generate more specific models for different
target platforms. These models can be described in a modelling or natural language –
note that PIM and PSM are usually expressed in UML. MDA concentrates on PIM and
PSM and their transformation. For CIM only an imprecise description can be found.

We argue that project specific KCP models are suitable as CIM (cf. fig. 7). In [GDD 06]
it is pointed out that CIM can be seen as some kind of ontology and as mentioned in
chapter 3, the KCP method presents an appropriate way for expressing ontologies.
Beyond this similarity, project specific KCP models are created from project
requirements as well as from a domain ontology whereas CIMs are expected to describe
the requirements for a system and the system’s immediate environment.

140



Fig. 7: OBSE and Model-driven Development (MDD)

The use of KCP models as CIM paves the way for a possible MDA extension going
beyond the so far existing transformations which are virtually limited to the PIM and
PSM stages. This extension will reduce the conceptual distance between requirements
and other NL-based documents on the application domain on the one hand side and
UML-like, project-specific models (PIM’s) on the other. The semi-automatic mapping
from KCP glossaries to UML models provides an automated transformation from CIM
to PIM. It extends the MDA approach for use in the early software development phases.
Moreover, our OBSE approach does not only take (project-specific) requirements into
account but also (project-independent) ontologies.

This way, the scope of CIM’s is extended to domain-spanning ontologies and future
(mostly automated) MDA transformation chains may lead the developers from early-
phase documents describing requirements and domain knowledge in glossary form
through various model stages down to executable programs in some common
programming language. This opens a way to combine Knowledge and Software Engine-
ering and to make domain-specific knowledge via CIM's and glossaries reusable for
professional SE projects.

References
[C-P 99] St. Cranefield and M. Purvis: A UML profile and mapping for the generation of ontology-

specific content languages. In.: The Knowledge Engineering Reviews, Vol. 17.1., pp. 21-39,
Cambridge Univ. Press 1999

[FKM+00] G. Fliedl, Ch. Kop, H. C. Mayr, W. Mayerthaler, Ch. Winkler: Linguistically based
requirements engineering - The NIBA project. In: Data & Knowledge Engineering, Vol. 35,
pp. 111 – 120 (2000)

[GDD 06] D. Gasevic, D. Djuric, V. Devedzic: Model Driven Architecture and Ontology
Development. Springer 2006

[G-L 02] M. Gruninger, J. Lee: Ontology - Applications and Design. CACM 45.2, pp. 39-41 (2002)

[Gru 95] T. Gruber: Towards principles for the design of ontologies for knowledge sharing, Int. J. of
Human-Computer Studies 43 (1995), also: What is an Ontology?
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

[Gua 98] N. Guarino: Formal Ontology and Information Systems. In: Proc. FOIS '98, Trento (Italy),
pp 3-15. IOS Press Amsterdam 1998

141



[Hes 96] W. Hesse: Theory and practice of the software process - a field study and its implications
for project management; in: C. Montangero (Ed.): Software Process Technology, 5th
European Workshop, EWSPT 96, pp. 241-256. LNCS 1149, Springer 1996

[Hes 97] W. Hesse: Improving the software process guided by the EOS model. In: Proc. SPI '97
European Conference on Software Process Improvement. Barcelona 1997

[Hes 02] W. Hesse: Das aktuelle Schlagwort: Ontologie(n). Informatik Spektrum 25.6, pp. 477-480
(2002)

[Hes 03] W. Hesse: Dinosaur Meets Archaeopteryx? or: Is there an Alternative for Rational's Unified
Process? Software and Systems Modeling (SoSyM) Vol. 2. No. 4, pp. 240-247 (2003)

[Hes 05] W. Hesse: Ontologies in the Software Engineering process. In: R. Lenz et al. (Eds.): EAI
2005 - Tagungsband Workshop on Enterprise Application Integration, GITO-Verlag Berlin
2005 and: http://sunsite.informatik.rwth-aachen.de/ Publications/CEUR-WS/Vol-141/

[Hes 06] W. Hesse: Modelle - Janusköpfe der Software-Entwicklung - oder: Mit Janus von der A-
zur S-Klasse. Proc. Modellierung 2006, pp. 99-114. GI-LNI P-82, Springer 2006

[HKM+ 04] W. Hesse, R. Kaschek, H.C. Mayr, B. Thalheim: Ontologien in der und für die
Softwaretechnik. Proc. Modellierung 2004, Marburg, pp. 269-270. GI-LNI P-45, Springer
2004

[KFM+ 05] Ch. Kop, G. Fliedl, H.C. Mayr, M. Hölbling, Th. Horn,: Extended Tagging as a Source for
Mapping Requirements Texts to Conceptual Models. In: Proc. 10th Int. Conf. on Natural
Language Applications for Information Systems NLDB2005, Alicante, LNCS Springer
2005

[K-M 03] Ch. Kop, H.C. Mayr: An Interlingua based Approach to Derive State Charts form Natural
Language Requirements In: Hamza M.H. (Hrsg.): Proceedings of the 7th IASTED
International Conference on Software Engineering and Applications, pp. 538 – 543. ACTA
Press 2003

[KMZ 04] Ch. Kop, H.C. Mayr, T. Zavinska: Using KCPM for Defining and Integrating Domain
Ontologies. Proc. Int. Workshop on Fragmentation versus Integration - Perspectives of the
Web Information Systems Discipline, Brisbane Australia. LNCS, Springer 2004

[KVH+05] Ch. Kop, J. Vöhringer, M. Hölbling, Th. Horn, Ch. Irrasch, H.C. Mayr: Tool Supported
Extraction of Behavior Models. In: R.K. Kaschek et al. (Eds.): Proc. 4th Int. Conf. on
Information Systems Technology and its Applications ISTA2005; Palmerston North (NZ),
LNI Springer 2005

[L-M 05] Jean-Michel Lemieux, Jeff McAffer: Eclipse Rich Client Platform: Designing, Coding, and
Packaging Java™ Applications. Addison Wesley 2005

[M-K 02] H.C. Mayr, Ch. Kop: A User Centered Approach to Requirements Modeling, Proc.
Modellierung 2002, pp. 75-86. LNI p-12, Springer 2002

[Miz 98] R. Mizoguchi: Tutorial on Ontological Engineering, Osaka University 1998
http://www.ei.sanken.osaka-u.ac.jp/pub/miz/Part1-pdf2.pdf

[N-H 89] G.M. Nijssen, T.A. Halpin: Conceptual Schema and Relational Database De-sign – A fact
oriented approach. Prentice Hall Publ. Comp, 1989

[OMG 03] Object Management Group (OMG): MDA Guide Version 1.0.1, http://www.omg.org/
(2003)

[Rus 07] A. Ruß: Übersetzung von UML-Diagrammen für die Ontologie-basierte Software-
Entwicklung. Diploma thesis. Univ. Marburg 2007

[SMK 04] A. Salbrechter, H.C. Mayr, Ch. Kop: Mapping Pre-designed Business Process Models to
UML In: Hamza M.H. (Hrsg.): Proc. of the 8th IASTED International Conference on
Software Engineering and Applications, pp. 400-405. ACTA Press Cambridge (USA) 2004

[V-M 05] J. Vöhringer, H.C. Mayr: Integration of schemas on the pre-conceptual level using the
KCPM-approach. Proc. 16th Int. Conference on Information Systems Development
ISD2005. LNCS Springer 2005

142




