S. Becker, 1. Bogicevic, G. Herzwurm, S. Wagner (Hrsg.): SE/SWM 2019,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 51

A Unified Lattice Model and Framework for Purity Analyses

Dominik Helm, Florian Kiibler, Michael Eichberg, Michael Reif, Mira Mezini'

Abstract: This paper was presented in 2018 at the 33rd ACM/IEEE International Conference on
Automated Software Engineering and proposes a framework for purity analyses. Analyzing methods in
object-oriented programs whether they are side-effect free and also deterministic, i.e., mathematically
pure, has been the target of extensive research. Identifying such methods helps to find code smells
and security related issues, and helps analyses detecting concurrency bugs. Pure methods are further
used for formal specifications and proving the pureness is necessary to ensure correct specifications.
However, no common terminology exists which describes the purity of methods. Furthermore, some
terms (e.g., pure or side-effect free) are used inconsistently. Further, all current approaches only report
selected purity information making them only suitable for a smaller subset of the potential use cases.
We present a fine-grained unified lattice model which puts the purity levels found in the literature into
relation and which adds a new level that generalizes existing definitions. We have also implemented a
scalable, modularized purity analysis which produces significantly more precise results for real-world
programs than the best-performing related work. The analysis shows that all defined levels are found
in real-world projects.

Keywords: Purity; Side-effects; Static Analysis; Lattice; Java.

1 Summary

Identifying side-effect free and also deterministic, i.e., mathematically pure, methods in
object-oriented programs helps to improve subsequent analyses for finding bugs [FiO8].
Pure methods—written in programming languages such as Java—are also used by formal
verification approaches as the foundation for the respective specifications [DLO7]. In that
case, it is necessary to prove a method’s purity to ensure that the formal specifications are
correct. Recent trends towards a more functional style of programming relying on pure
methods, also demonstrate the overall relevance.

We present a fine-grained unified lattice model for specifying a method’s purity. In the
model, each of the 13 lattice elements has a well-defined semantics and is put into relation
to the purity levels found in the literature. In addition to previously defined purity levels, the
model is extended by the level Contextual Purity which generalizes the so-called External
Purity [BF0O9] for methods that may modify their parameters but no static state. Being
able to ignore specific operations in specific contexts [SCOD16], e.g., logging in business

! Technische Universitit Darmstadt, FG Softwaretechnik, Germany
{helm,kuebler,eichberg,reif, mezini } @cs.tu-darmstadt.de

@@ @ doi:10.18420/5¢2019-10

https://creativecommons.org/licenses/by-sa/4.0/
{helm,kuebler,eichberg,reif,mezini}@cs.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/se2019-10

52 Dominik Helm et al.

applications, is also supported and generalized to Domain-specific Purity. The proposed
model is sufficiently detailed for all identified use cases. Furthermore, the purity levels
(External and Contextual Purity) support purity analyses to rate methods as pure if the
called methods have side-effects that are limited to the caller. Therefore, the lattice model is
also a suitable target for modular purity analyses that reason about each method in isolation.

Additionally, we present a scalable, purity analysis, called OPIUM which is implemented
using OPAL [Eil8], that produces more precise results for real-world code than the best-
performing state-of-the-art tool ReIm [HM12]. OPIUM can, e.g., compute the purity for
all 16000 methods of Batik—which requires computation of the purity of all library
methods transitively used by Batik—in 103s on a modern computer which is on par with
Batik while it analyzes Xalan in 104s, ~25% faster than ReIm. OPIUM not only identifies
more side-effect free methods that state-of-the-art tools including Relm, but it also provides
more fine-grained results by reporting pure, externally and contextually pure and side-effect
Jfree methods as well as domain-specific methods that adhere to these properties only in a
given domain, e.g. excluding logging or exceptions. Using the analysis, we show that all
defined levels are relevant when analyzing real-world projects such as those from XCorpus
or the Java and Scala Development Kits. The analysis infers purity for individual methods
in isolation. It relies on the results of several independent analyses, making it modularly
composable with supporting analyses with different precision/performance trade-offs.

OPIUM is available at www.opal-project.de/Opium.html.

References

[BFO09] Benton, William C; Fischer, Charles N: Mostly-functional behavior in Java programs. In:
International Workshop on Verification, Model Checking, and Abstract Interpretation.
Springer, pp. 2943, 2009.

[DLO7] Darvas, Addm; Leino, K Rustan M: Practical reasoning about invocations and implemen-
tations of pure methods. In: FASE. volume 4422. Springer, pp. 336-351, 2007.

[Eil8] Eichberg, Michael; Kiibler, F; Helm, D; Reif, M; Salvaneschi, G; Mezini, M: Lattice Based
Modularization of Static Analyses. In: Companion Proceedings for the ISSTA/ECOOP
2018 Workshopss. ACM, pp. 111-116, 2018.

[Fi08] Finifter, Matthew; Mettler, Adrian; Sastry, Naveen; Wagner, David: Verifiable func-
tional purity in Java. In: Proceedings of the 15th ACM conference on Computer and
communications security. ACM, pp. 161-174, 2008.

[HM12] Huang, Wei; Milanova, Ana: RelmInfer: Method purity inference for Java. In: Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. ACM, p. 38, 2012.

[SCOD16] Stewart, Arran; Cardell-Oliver, Rachel; Davies, Rowan: Fine-grained classification of
side-effect free methods in real-world Java code and applications to software security. In:
Proceedings of the Australasian Computer Science Week Multiconference. ACM, p. 37,
2016.

