
Flexible Scheduling and Thread Allocation

for Synchronous Parallel Tasks

Christoph W. Kessler and Erik Hansson

IDA, Linköping University, 58183 Linköping, Sweden

{chrke,eriha}@ida.liu.se

Abstract: We describe a task model and dynamic scheduling and resource allocation
mechanism for synchronous parallel tasks to be executed on SPMD-programmed syn-
chronous shared-memory MIMD parallel architectures with uniform, unit-time mem-
ory access and strict memory consistency, also known in the literature as PRAMs
(Parallel Random Access Machines).

Our task model provides a two-tier programming model for PRAMs that flexibly
combines SPMD and fork-join parallelism within the same application. It offers flex-
ibility by dynamic scheduling and late resource binding while preserving the PRAM
execution properties within each task, the only limitation being that the maximum
number of threads that can be assigned to a task is limited to what the underlying
architecture provides. In particular, our approach opens for automatic performance
tuning at run-time by controlling the thread allocation for tasks based on run-time
predictions.

By a prototype implementation of a synchronous parallel task API in the SPMD-
based PRAM language Fork and experimental evaluation with example programs on
the SBPRAM simulator, we show that a realization of the task model on a SPMD-
programmable PRAM machine is feasible with moderate runtime overhead per task.

1 Introduction

During the recent years, computer architectures available on the consumer market have

switched from single-core architectures to multi-cores, and it is reasonable to assume that

we enter the many-core era in the near future. The reason for this change is that hardware

manufacturers try to keep up with the demand of more computation power and at the

same time consume less energy. As a consequence, speed-up of legacy, single-threaded

computer programs does not come for free any more but requires rewriting to leverage

many cores. Even worse is that, even where providing a shared memory abstraction, these

new architectures mainly follow NUMA and SMP designs that lack features that could

ease parallel programming, such as strong memory consistency or deterministic execution.

To ease the burden for both application programmers and compiler engineers, some archi-

tecture projects [PBB+02, For10, WV08] are working towards supporting more powerful,

deterministic parallel programming models such as the PRAM model [FW78, KKT01].

The PRAM model is often considered as only a theoretical programming model, but al-

ready in the 1990s it has been realized in hardware, albeit not on a single chip, e.g. the SB-

PRAM [PBB+02, KKT01]. In a current project by VTT Oulu (Finland) a new architecture

517

517

called Replica is being developed. It supports both PRAM and NUMA mode, and features

massively hardware-multithreaded configurable very long instruction word (VLIW) pro-

cessor cores with chained functional units and a powerful 2D mesh on-chip combining

network providing uniform access to on-chip distributed shared memory. Replica will be

realized in hardware and is the successor of the Total Eclipse architecture [For10].

PRAMs are instruction-level synchronous MIMD parallel architectures with shared mem-

ory and are traditionally programmed in the SPMD execution style using PRAM languages

such as Fork [KKT01, KS97a], e [For04] etc. that map the naturally available tight syn-

chronization of the underlying hardware to the expression and statement level, allowing to

reduce explicit synchronization in the code while maintaining deterministic parallel exe-

cution.1 While following the SPMD style across the whole machine gives full control over

the assignment of computation to execution resources, it becomes cumbersome for more

irregular application scenarios that require adaptive resource allocation strategies.

In this work, we show how a flexible MIMD task model allowing multithreaded PRAM

tasks, can be realized on top of a SPMD programmed PRAM platform. The data-driven,

dynamic scheduling principle of our task model is inspired by current single-threaded task

programming models such as StarPU and StarSs. Our work is part of a pre-study for

some features of the Replica architecture’s runtime system. As the Replica simulator and

software toolchain is not completely finished yet, we use the similar SBPRAM simulator

and Fork toolchain [KKT01] for the prototype implementation and evaluation.

2 Principle

We are given a PRAM with p hardware threads and with a low-level programming model

based on SPMD execution style, i.e., all p threads execute main from the beginning

and the hardware itself does not provide for dynamic creation and deletion of additional

threads2. Hence, a software layer on top of a low-level programming environment will

be responsible for providing a task-based programming model. In the following, we pro-

pose a task-based programming model with non-preemptive dynamic scheduling, where

the tasks can be serial or PRAM-style synchronous parallel computations and thus might

require one or several threads of the underlying PRAM machine for execution.

Thread pool A program that uses synchronous parallel tasks or asynchronous sequential

tasks (or both) should in the beginning have a single thread initialize the task system by

calling init tasksystem(); and then send a subset of the available hardware threads

as worker threads into a central shared thread pool TP, where they wait for work. A thread

joins the thread pool by calling join threadpool(). If no tasks have been created

yet at this time, at least one thread should continue execution to create work for the others,

and may still join the thread pool later, thereby becoming an additional worker thread.

1The strict memory consistency model of PRAMs is the strongest possible shared memory consistency model,

it is even stronger than sequential consistency.
2In the following, thread means hardware thread (also known as virtual processor) unless otherwise stated.

518

518

typedef struct vector {

int vid; // unique ID for debugging purposes

int state; // 0 = data not ready, 1 = data valid

void *pdata; // address of the wrapped payload data array

int n_elems; // number of elements

int type; // element type field, refers to type table

struct sptaskdescriptor *consumers[MAXCONSUMERSPERVECTOR];

int n_consumers; // number of registered consumer tasks

} Vector;

Figure 1: Implementation of the Vector container in the C-based PRAM language Fork.

The program terminates successfully (by each thread calling exit(0)) if all p worker

threads are waiting idle in the thread pool and there is no task left in the task queue (see

below). A global counter holding the current number of threads waiting idle in TP can

easily be maintained using atomic prefix-add operations.

Containers A container is a wrapper data structure that encapsulates aggregate user data

such as an array together with metadata such as information about its size, type and state

(invalid/ready), and manages memory access information such as where its most recent

contents is currently located if there are multiple kinds of memory in the system. In par-

ticular, containers can, on such systems, provide consistent access to data on request (i.e.,

a call to the container’s flush operation) by enforcing a write-back to the default memory

location. On a PRAM this latter feature is actually not required, while it can be useful on

a NUMA system as it provides an object-based distributed shared memory.

The most common container, and the only one that we support by now, is Vector, in-

spired by the corresponding container type in the C++ STL. For the C-based PRAM lan-

guage Fork, our Vector is internally defined as shown in Figure 1. However, following

a modular design style, the application programmer (API user) should not access these

fields directly but use predefined access functions and macros instead, some of which will

be described in the following.

In C++, Vector is generic in the element data type. In the C-based Fork language, we

have to represent the element type explicitly using a type field. The consumers are

those task instances (see later) that take this operand container with access mode ”in”.

The function Vector *new Vector(void *array, int length, int type

); allocates a new Vector container for array of length elements. The payload data

array is not copied, only a pointer to it is stored in the container. Hence, it is possible

that multiple containers point to the same payload data. This is a way to avoid unnecessary

copying; it is the programmer’s responsibility that this sharing of payload data does not

lead to data races. An example will be given at the end of this section.

The state of a vector v can be set as follows. A task is blocked until all its argument

containers are in ready state. Tasks waiting for an argument container to become valid

are registered in the container so they can be notified. setREADY(v) sets v to state

valid; this operation is used for containers holding input data to a task-based computation.

519

519

typedef struct sptaskdescriptor {

int tid; // Rank in Frozen Queue FQ

void (* func)(int argc, Vector **argv, Vector *ret);

sync void (* sfunc)(sh int argc, sh Vector **argv, sh Vector *ret);

int argc; // number of arguments

Vector **args; // dynam. allocated shared array of argument containers

Vector *retvalue; // container that holds the return value

int minnthreads, maxnthreads; // lower and upper bound for #threads

int *shmem; // pointer to shmem, initially 0

int shmemsize;

int nthreads; // actual number of threads running this task as a group

} sptask;

Figure 2: Data structure for a SP-task descriptor in C/Fork. One such entry exists for each

task in the global shared heap memory.

setREADYandpromote(v) additionally notifies the consumer tasks that depend on v,

and promotes these to READY state where v was the last awaited argument.

Tasks can also return data in a container, which usually is then used as input to subsequent,

data-dependent tasks. Also in this case, the consumers will be notified and promoted to

READY state as applicable. Depending on the type of return data, one of the following

three versions of YIELD should be used:

• YIELD VALUE(ret,type,value) copies scalar base-type data to (the first

element of) a (pre-allocated) payload array in a (pre-allocated) Vector ret.

• YIELD PTR(ret,ptr) replaces the payload array field in the Vector ret by

the new array pointed to by ptr.

• YIELD VOID(ret) is a variant of YIELD with no assigned return value. This is

useful for in-place updates of the payload array; we will later see an example of this.

SP-functions and SP-tasks Synchronous parallel functions (SP-functions) are executed

by the calling group of hardware threads in lock-step mode, hence the execution will be

deterministic (assuming that the resolution of possible concurrent write access conflicts is

deterministic, too).

We define synchronous parallel tasks (SP-tasks) as instantiations (invocations) of such

synchronous parallel functions by a group of threads. The special case of invocations

of SP-tasks by a single-thread group is the ordinary sequential task model known from

classical scheduling theory. SP-tasks are a special case of malleable tasks, which can be

executed by an arbitrary number of threads but are internally not necessarily synchronous.

Tasks are, at runtime, represented by a task descriptor, a data structure defined in Figure 2,

which contains the key parameters of a task, such as the SP-function to be called, the

argument vector and return value, minimum and maximum specified thread allocation (or

default values if unspecified), and also some non-public administrative entries such as the

task state. The shmemsize field holds the size of the shared memory block shmem to be

520

520

allocated to the task before execution; it must be 0 for an asynchronous task and > 0 for a

synchronous task to accommodate its group stack and heap.

These task properties are set upon creation (see below) or derived automatically; it is

not intended to change them during execution (e.g., no reallocation of its shared memory

segment while the task is running). In future work we may add some get functions or

macros to allow for querying of certain task properties.

Creating new tasks and SP-tasks At the run-time system programming level, task de-

scriptors for asynchronous and synchronous tasks are created explicitly by the constructors

sptask *new_task (void (*foo)(int, Vector **, Vector *),

int argc, Vector **args, Vector *ret);

sptask *new_stask (sync void (*foo)(sh int, sh Vector **, sh Vector *),

int argc, Vector **args, Vector *ret,

int minp, int maxp, int shmemsize);

which take a function name and its arguments. The static type checking of synchronicity

and sharity in Fork requires different constructors for synchronous and asynchronous tasks.

minp and maxp specify the minimum and maximum number of threads to be used for this

task. The implementation enforces at runtime that the value for minp is at least 1, and

that of maxp is automatically truncated to the maximum available number of workers if it

is too large. Hence, it is safe (but possibly not most efficient) to oversize maxp.

A task (synchronous or asynchronous) t can be spawned explicitly by a spawn operation:

spawn task(t) creates a task descriptor with the parameters given by t and enqueues

it to a central scheduler for execution concurrently with the continuation of the spawning

thread; control returns thus immediately to the spawning thread.

Lifecycle, scheduling and synchronization of tasks During its lifecycle, a task’s state

changes from new to ready to running to terminated. When spawned, created tasks receive

a unique task ID (tid field) and are sent to a frozen queue FQ of tasks that are not yet

data ready. Once all its input arguments (containers) are in ready state, a task is promoted

to ready state and enqueued in a central shared task queue TQ, from where idle worker

threads fetch new work for execution. All synchronization between SP-tasks is data driven.

From the task queue TQ, idle threads fetch their next task for execution. An asynchronous

task will be assigned to exactly one thread. For synchronous tasks, at least minnthreads

and at most maxnthreads idle threads will be collected, barrier-synchronized and as-

signed as a synchronous group to the execution of the task’s SP-function. Once the task

terminates, the task status will be changed to TERMINATED.

For now, we implemented for SP-tasks the thread assignment policy FIFO-FLEX, i.e., the

oldest task waiting in TQ will be assigned threads first, and dispatched as soon as at least

minnthreads have been assigned; as multiple threads can become idle (almost) simul-

taneously, it is possible that, implementation defined, more threads, up to maxnthreads

in total, could be allocated when the task starts execution. Further available threads will

be reassigned to the next task(s). The current implementation is blocking, i.e., only one

521

521

#include <fork.h>

#include "forktasks.h"

#define N_A 2048 // (max) array size

sh int A[N_A];

sh Vector *s, *r;

// ... some minor details omitted

void main(void)

{

... // read / initialize array A

if ($==0)

init_tasksystem();

barrier;

if ($==0) {

sptask *t;

s = new_Vector(A, N_A);

r = new_Vector(A, N_A); // in-place

t = new_stask(msort, 1, &s, r, 1, 1, 1000);

setREADY(s);

spawn_task(t); // spawn the initial task (msort)

}

barrier;

join_threadpool();

// once all work has been done, the workers return here

}

Figure 3: Mergesort example, the main program. The hardware thread (PRAM processor)

with rank 0 initializes the task system and creates two vector containers s and r that both

share the same payload array A of size N A, for in-place sorting by the SP-task msort

that takes s as input operand and r as output operand. After this task has been spawned,

all hardware threads join the thread pool where they are assigned work. The code for the

SP-tasks msort and merge can be found in Figures 4 and 5, respectively.

task can be assigned and dispatched at a time. In future extensions of this work, additional

thread assignment policies such as smallest-task first or best-fit could be tried. Adaptive

thread allocation as in [EKC06, KL08] could be tried as well.

Example Figures 3, 4 and 5 show an implementation of recursive parallel mergesort

with explicitly parallel tasks. For mergesort there are two types of tasks required: msort,

recursive mergesort tasks that form the divide step in the recursion tree, which create new

subtasks with their containers in each instance (see Figure 4), and merge, the tasks form-

ing the combine step, merging two subsolutions into one (see Figure 5). The instances of

these tasks are connected by data flow edges via container objects. See the figure captions

for further explanation of the code. The values used in the new stask() calls for minp

(1) and maxp (1) are motivated by the fact that msort tasks themselves do not perform

much work but unfold the tree of merge tasks where almost all of the computational work

is done. A merge task of size n with a (not work-optimal) fully parallel implementation

can use up to M(n) = n threads. In fact, this value M is a performance tuning parameter.

522

522

sync void msort (sh int argc, sh Vector **argp, sh Vector *ret)

// invariant: the Vector’s are allocated by caller

{

seq {

Vector src = (Vector *)argp[0]; // container passed in

int *arr = ((int *)(src->pdata)); // payload array

int n = src->n_elems;

if (n<=1) {

// may call qsort(arr,n) here if threshold > 1

YIELD_VOID(ret); // return data in place

}

else {

sptask *t1, *t2, *t3;

Vector **s = (Vector**)shmalloc(2*sizeof(Vector*));

Vector **r = (Vector**)shmalloc(2*sizeof(Vector*));

s[0] = new_Vector(arr, n/2);

s[1] = new_Vector(&(arr[n/2]), n-n/2);

r[0] = new_Vector(arr, n/2);

r[1] = new_Vector(&(arr[n/2]), n-n/2);

t1 = new_stask(msort, 1, s, r[0], 1, 1, 1000);

t2 = new_stask(msort, 1, s+1, r[1], 1, 1, 1000);

setREADY(s[0]);

setREADY(s[1]);

spawn_task(t1);

spawn_task(t2);

// synchronization on r1 and r2 is automatic by scheduler

t3 = new_stask(merge, 2, r, ret, 1, M(n), 1000);

spawn_task(t3); // delegates the writing of ret

}}}

s[1]s[0]

argp[0]

r[0] r[1]

msort

ret

msort

merge

msort

Figure 4: Mergesort example (cont.), code for the msort (mergesort) tasks. A msort

task takes 1 argument, passed in argp[0]: the vector to be sorted. It returns the sorted

vector in ret, with the same payload data for in-place sorting. In the else branch, a new

level of the task graph is unfolded. Fresh vector container objects (s[0], s[1], r[0],

r[1]) are dynamically allocated for all intermediate operands of created subtasks, see

the illustration, while the payload array space can be reused, thus avoiding copying and

memory management. The data flow dependencies between the msort subtasks t1, t2

and the merge subtask t3 are given explicitly by the container references.

3 Implementation Details

A prototype of a runtime system and API has been implemented in Fork for the SBPRAM,

for which we use the cycle-accurate instruction-level simulator pramsim.

Our implementation uses for the general case (mixed-mode parallelism, i.e. allowing both

synchronous parallel and asynchronous sequential tasks to occur in the same application)

two central, blocking, shared task queues as main data structure for the frozen queue

and for the ready queue, respectively, which are implemented as bounded buffers of size

O(maxT) where maxT is the maximum number of tasks that could be active simulta-

neously; this parameter can be adapted if necessary. The queue implementations make

extensive use of the SBPRAM’s nonblocking, constant-time multiprefix-add operations.

523

523

sync void merge (sh int argc, sh Vector **argp, sh Vector *ret)

// invariant: the Vector’s are allocated by caller

{

sh Vector *s1 = (Vector *)argp[0], *s2 = (Vector *)argp[1];

sh int *arr1 = (int *)(s1->pdata), *arr2 = (int *)(s2->pdata);

sh int n1 = s1->n_elems, n2 = s2->n_elems;

/* ... merge arr1 and arr2 in place, code omitted */

seq

YIELD_VOID(ret); // as ret also points to arr1

}

Figure 5: Mergesort example (cont.), code for the merge tasks. Merge tasks take two

input parameters, namely two vector containers passed in argp, pointing to two adjacent

subarrays in an array where they are to be merged in-place. The result vector container

points to the first subarray head (arr1). Once the subarrays have been merged, the ret

vector container is advanced to ready state by YIELD VOID.

Each new synchronous parallel task is, upon dispatch, allocated a new shared stack seg-

ment from global shared heap memory, which it keeps during its lifetime and releases

upon termination. The code for startup and finalization of parallel tasks is (as already for

ordinary Fork programs) written in SBPRAM assembler because some hardware thread

(PRAM processor) registers for addressing the new shared stack segment must be saved

and set up resp. restored properly.

For mixed-mode parallel applications, dispatch of data-ready tasks is, in the current pro-

totype, serialized because the implementation needs to make sure that lower and upper

bounds for allocating available threads to all ready tasks in the FIFO-FLEX scheduler are

properly addressed as stated by each individual parallel task. Simpler (non-individual)

task allocation policies or less fair dispatch schemes might allow for a more efficient, non-

serializing implementation, which is a subject for future extension.

For programs that use asynchronous tasks only, we have an alternative implementation

with lower overhead and a completely parallel (and non-blocking) task queue.

4 Experimental Evaluation

Sequential tasks only We use Fibonacci (the computation of the N th Fibonacci number

by the well-known recursive algorithm) as a very simple example that contains almost no

computation, hence it reflects very well the overhead that is incurred by the task manage-

ment system. Table 1 (left) shows runtime results taken on the SBPRAM simulator (given

in thousand SBPRAM clock cycles) for N = 17 with different numbers of SBPRAM

processors and for the two implementations of the shared task queue data structures: (i)

blocking get task and nonblocking insert, and (ii) completely non-blocking. Fib(17) re-

cursively unfolds 7751 tasks in total, and creates 10335 operand containers. The task

queue buffers were dimensioned with 8K entries each. The average overhead per task is

about 2000 clock cycles with the nonblocking task queue and only slightly higher with

524

524

Table 1: Test runs for Fibonacci number calculation (left) and Mergesort (right), all times

are in thousand SBPRAM clock cycles.

Overall execution time for computing the

17th Fibonacci number, creating 7751 tasks.

Hardw. Time w. Blo- Time with Non-

Thr. cking TQ (i) blocking TQ (ii)

1 16086 14148

2 8158 7090

4 4466 3579

8 2839 1842

16 2209 1068

32 2120 926

64 2099 897

128 2080 893

256 2056 892

Overall execution time for Mergesort of 2048 in-

tegers, creating 6143 tasks and 8191 vectors. M

denotes the choice for the upper bound maxp for

merge tasks of size N .

HW Time (blocking TQ)

Thr. M = N/2 = N/4 = N/8 M = 1 seq.

1 25033 25037 25039 24935 18912

2 13615 13118 12855 12933 9686

4 7189 6764 6532 6992 5016

8 4158 3730 3796 4312 2990

16 2572 2320 2425 3265 2244

32 2116 2006 2000 3104 2166

64 1896 1858 1829 3077 2147

128 1799 1777 1793 3065 2135

the blocking one. Note that program execution (and timing) on SBPRAM is completely

deterministic, therefore a single test run per scenario is sufficient for the measurements.

One fundamental problem that this example reveals is that Fibonacci creates the tasks

in a LIFO way, i.e., the earliest-created task is executed last of all, hence the maximum

number of tasks that (could be) simultaneously alive almost equals the overall number of

tasks, requiring an equally large dimensioning of the task queue data structures to avoid

overflow and possibly also (too) many containers that are alive simultaneously. Similar

behavior will be encountered with many divide-and-conquer algorithms, too. Where space

becomes a critical resource, recursive programs thus might need to be reformulated in

order to limit the amount of simultaneously alive tasks and containers.

Mergesort Our second example is the parallel mergesort program as shown above. Mer-

gesort (msort) tasks are set up to use exactly 1 worker thread, and merge tasks use at

least one and up to N workers for merging of size-N vectors. Results are shown in Table 1

(right) for a Mergesort of 2048 integers and different PRAM sizes. As 6143 tasks are

generated, the average granularity is approximately 3000 instructions per task with serial

(”seq.”) and 4000 with parallel merging, including the dispatch overhead of about 2000

instructions. This makes also clear that the granularity is too fine for most of the tasks,

as the overhead dominates. Coarsening the task granularity, e.g. by replacing spawning of

light-weight msort tasks with inlined computation, is a way of tuning performance; this

can be an issue for future work on auto-tuning optimizations.

We experimented with different choices for the upper limit M of the number of threads

for merge calls using fully parallel merging, which is not work-optimal. M is a tuning

parameter; we found empirically that e.g. M = N/4 and M = N/8 work better than

M = N , M = N/2, M = log2 N or M = 1. As expected, these do basically not differ in

the case of a single worker thread. Using a sequential merge routine (work-optimal) leads

to lower cost for small machine sizes but does not scale beyond 16 threads.

525

525

5 Related work

The synchronous parallel task concept is inspired by the join statement of Fork [KS97b,

KKT01]. The main difference is that join is intended to implement synchronous paral-

lel critical sections, so there will, at any time, be at most one instantiation of any syn-

chronous parallel function (join body) running, while here several instances of the same

SP-function could run simultaneously on disjoint thread subsets. The concept of parallel

critical sections is motivated by the need of protecting certain code sections against race

conditions caused by unsynchronized concurrent updates. While strict sequentialization

using mutex locks is an option, the deterministic synchronous execution of PRAM systems

opens for another more scalable way of avoiding race conditions. The join construct was

demonstrated in Fork for parallel heap memory allocation and accelerated I/O processing

[KKT01], operations that otherwise require mutual exclusion of individual threads.

The optimization of thread allocation to synchronous tasks was solved by Eriksson et al.

[EKC06] for the special case where subtasks generated by recursive calls in parallel divide-

and-conquer computations were executed in-line, either in parallel on disjoint thread sub-

groups or in serial by the entire thread group. Execution time of tasks is predicted from

closed formulas that depend on problem and group size, and that are calibrated from tim-

ing data on the target machine (here, SBPRAM). Here, we generalize over this work by

decoupling the subtask execution from the caller task, adding more flexibility and possibly

sacrificing predictability.

StarPU [ATN10] is a run-time system for single-threaded and multi-threaded (but non-

PRAM) tasks that can execute on different kinds of execution units such as CPU cores,

GPUs or other programmable accelerators. In contrast to our model, StarPU does not

support nested or recursive tasks. StarPU tasks are serial3 and run on a single CPU or

single GPU; support for multi-CPU OpenMP tasks is an issue of ongoing work. StarPU

keeps track of each task’s recent execution time history depending on input sizes, such that

future decisions can be based on preditions made from collected history data.

StarSs (Star-superscalar) [PBAL09] is a family of languages and runtime systems imple-

mented for different kinds of parallel target platforms, such as CellSs, GPUSs, OMPSs,

ClusterSs. Similarly as StarPU, the StarSs model extends sequential computing by dis-

covering and scheduling data-ready sequential tasks, which are defined by invocations of

specific user functions, at run-time to some available execution unit, such as an idle CPU

core, a GPU or a Cell SPU. While StarPU uses a specific API, StarSs uses language ex-

tensions to mark up task functions with their input and output parameters.

Wimmer and Träff [WT11b, WT11a] have considered multiple-thread allocation in a work-

stealing scenario on distributed task queues, in order to gather a set of several threads for

executing a parallel (but non-PRAM) algorithm. They use the concept of mixed-mode

parallelism to support both task-based algorithms, such as divide and conquer, and SPMD

(single program multiple data) algorithms in the same application where one task can

3GPU tasks in StarPU are of course internally massively parallel as they are run on many or all cores of a

GPU, but to the task scheduler they look like an ordinary serial task, and the entire GPU is treated as a single

resource for scheduling.

526

526

spawn other tasks. Their approach is based on classical work-stealing with independently

working processors with their own queues where communication is only done when they

are out of work. Wimmer and Träff organize processor groups in a binary tree topology. At

level 0, each processor is in its own group; on higher levels they work together in groups

of groups, called teams. Creating a team is done by work stealing in a deterministic way

by visiting so-called partners on each level until work is found. The teams are needed to

execute parallel tasks that require more than one thread. A team can “live” longer than a

task, e.g. be used to execute tasks that need at most the number of threads available in the

team. The implementation uses standard lock free data structures. Apart from not being

limited to group sizes that are powers of two, a main difference from their work is that we

can afford the luxury of having a central shared work queue without time penalty since we

have a Combining CRCW PRAM architecture.

6 Conclusion

We have introduced and evaluated a task model for flexible dynamic scheduling and re-

source allocation mechanism for synchronous parallel tasks executing on a PRAM ar-

chitecture. Our proof-of-concept prototype implementation shows that we can realize it

with a low runtime overhead per task. It provides the option of dynamic task schedul-

ing and thread allocation on top of a SPMD-programmed PRAM machine that was mostly

designed for single-task applications. It combines the flexibility of task-based runtime sys-

tems with the power of SPMD-controlled, naturally synchronized PRAM execution within

the SP-tasks.

Future work will consider high-level programming support that avoids low-level coding of

calls to the run-time system API. Possible approaches include (1) high-level language con-

structs such as spawn, (2) a library of skeleton functions for frequently occuring parallel

algorithmic design patterns such as parallel divide-and-conquer, or (3) graphical program-

ming languages for specifying task graphs with parallel tasks (similarly to the illustration

in Fig. 4) from which Fork source code can be generated automatically [KSF10]. Ex-

periments with further thread allocation strategies and, in particular, static and dynamic

autotuning of thread allocation will be considered in future work. Finally, porting our

Fork-based prototype implementation to the new VTT Replica architecture and system

software can be done as soon as the complete toolchain is available.

Acknowledgments This research is funded by VTT, project REPLICA, and by SeRC. We thank

the anonymous reviewers for their helpful comments.

References

[ATN10] Cedric Augonnet, Samuel Thibault, and Raymond Namyst. Automatic Calibration of
Performance Models on Heterogeneous Multicore Architectures. In Proc. HPPC-2009,

527

527

in Euro-Par 2009 Workshops, volume 6043 of Lecture Notes in Computer Science, pages
56–65. Springer Berlin / Heidelberg, 2010.

[EKC06] Mattias Eriksson, Christoph Kessler, and Mikhail Chalabine. Load Balancing of Ir-
regular Parallel Divide-and-Conquer Algorithms in Group-SPMD Programming Envi-
ronments. In Proc. 8th Workshop on Parallel Systems and Algorithms (PASA 2006),
Frankfurt am Main, Germany, GI Lecture Notes in Informatics (LNI), vol. P-81, pages
313–322, March 2006.

[For04] M. Forsell. Designing NOCs with a parallel extension of C. In FDL’04, pages 463–475,
2004.

[For10] M. Forsell. TOTAL ECLIPSE – An Efficient Architectural Realization of The Parallel
Random Access Machine. Parallel and Distributed Comput., Ed. A. Ros, IN-TECH,
Wien, pages 39–64, 2010.

[FW78] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proc. 10th Sympo-
sium on the Theory of Computation (STOC), pages 114–118, 1978.

[KKT01] Jörg Keller, Christoph Kessler, and Jesper Träff. Practical PRAM Programming. Wiley
Interscience, 2001.

[KL08] Christoph Kessler and Welf Löwe. A Framework for Performance-Aware Composition
of Explicitly Parallel Components. In Proc. ParCo-2007 conference, Jülich/Aachen,
Germany, Sep. 2007. In C. Bischof et al. (eds.): Parallel Computing: Architectures,
Algorithms and Applications, Advances in Parallel Computing Series, Volume 15, IOS
Press, pages 227–234, February 2008.

[KS97a] Christoph W. Keßler and Helmut Seidl. The Fork95 Parallel Programming Language:
Design, Implementation, Application. Int. J. of Par. Programming, 25(1):17–50, Febru-
ary 1997.

[KS97b] Christoph W. Keßler and Helmut Seidl. Language Support for Synchronous Parallel
Critical Sections. In Proc. APDC’97 Int. Conf. on Advances in Parallel and Distributed
Computing, Shanghai, China. IEEE CS press, March 1997.

[KSF10] Christoph W. Kessler, Wladimir Schamai, and Peter Fritzson. Platform-independent
modeling of explicitly parallel programs. In Proc. PARS’10: 23rd PARS-Workshop on
parallel Systems and Algorithms, Hannover, Germany, Feb. 2010. In: M. Beigl and F.
Cazorla-Almeida (Eds.): ARCS’10 Workshop Proceedings, pages 83–93. VDE-Verlag
Berlin/Offenbach, Germany, February 2010.

[PBAL09] Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesús Labarta. Hierarchical Task-
Based Programming With StarSs. IJHPCA, 23(3):284–299, 2009.

[PBB+02] Wolfgang J. Paul, Peter Bach, Michael Bosch, Jörg Fischer, Cédric Lichtenau, and
Jochen Röhrig. Real PRAM Programming. In Proc. Euro-Par’02, August 2002.

[WT11a] Martin Wimmer and Jesper Larsson Träff. Work-stealing for mixed-mode parallelism
by deterministic team-building. In 23rd ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA 2011), pages 105–115, 2011.

[WT11b] Martin Wimmer and Jesper Larsson Träff. A work-stealing framework for mixed-mode
parallel applications. In 16th Int. Worksh. on Multi-threaded Architectures and Applica-
tions (MTAAP) at Int. Par. and Distr. Processing Symp. (IPDPS 2011), 2011.

[WV08] X. Wen and U. Vishkin. FPGA-based prototype of a PRAM-on-chip processor. In Proc.
ACM Computing Frontiers, Ischia, Italy, May 2008.

528

528

