Using Mountain Visualizations for Orientation in Source Code

Jan Nonnen

University of Bonn
Computer Science II1
Bonn, Germany

nonnen@cs.uni-bonn.de

Abstract

In source code navigation developers memorizes navi-
gation features for orientation even if they are hardly
aware of it. Furthermore, a majority of development
time is spent on code navigation. We propose a novel
visualization of source code indentation to provide ad-
ditional landmarks for orientation. This visualization
uses the human perception of landmarks in natural
landscapes as orientation objects.

Keywords: software visualization, indenta-
tion, program comprehension, landmarks, ori-
entation, code navigation

1 Introduction

One of the developer activities performed most of the
time is code navigation. Ko et al. [5] reported that
programmers spent about 35% of their time with nav-
igation in source code. During navigation it is impor-
tant for the developer to memorize navigation features
to be able to later find the way back to the visited
locations. The so called spatial memory is then accu-
mulated into a cognitive map [8]. This map is based
on two elements: layout orientation and landmark ori-
entation.

Elias [3] defined landmarks to be objects that have
a distinctive shape in regards to their surroundings.
She emphasized that humans rely on these landmarks
for orientation and that we perceive them automati-
cally through vision. In source code the shape of the
source code could be used to identify landmarks for
orientation. In our approach, we want to use the in-
dentation of the source code to create a visualization
of this as explicit landmarks for orientation.

The effect of indentation on program comprehen-
sion is often overlooked. In 1983, Miara et al. [7]
observed in a user study on the Pascal programming
language that the level of indentation had a significant
effect on program comprehension. In their study, the
best comprehension was achieved with an indentation
of 2 or 4 spaces. They observed that more indentation
lead to harder program comprehension.

The Sun Java coding guidelines have only a short
note mentioning that one should use 4 spaces as a

Softwaretechnik-Trends 33:2, Mai 2013

replacement for one tab and a few additional rules
for indenting parameters [9]. We studied the Quali-
tas Corpus [10] release 20101126r and found that the
majority of source code lines used only spaces as in-
dentation (78%). In this corpus, 18% of the lines
where indented with tabs only and 4% used a mix-
ture of both. Most lines indented with spaces had
an indentation level of a multiplicity of 4, thus sat-
isfying the Sun Java coding guidelines. Interestingly,
the corpus contained every indentation level up to 152
spaces. Furthermore, the indentation levels above 140
can be traced back to parameter indentation of nested
method calls.

Importance of indentation was mentioned also by
Martin [6, p.88]. He explained that a source file is
rather a hierarchy and that we use indentation to
make it visible. To show this hierarchy usually meth-
ods are indented one level, loop bodies have a higher
indentation level than the surrounding block. This
allows to see parts of the structure already by inden-
tation: ”Your eye can rapidly discern the structure of
the indented file. You can almost instantly spot the
variables, constructors, accessors, and methods.”[6,
p.88].

DeLine et al. [1] observed an effect of indentation
for orientation and navigation. They suspected that
the source code outline implicitly helped the partici-
pants of their study to navigate faster.

Hindle et al. [4] studied the correlation between the
indentation of revisions and classical complexity met-
rics such as Halstead’s and McCabe’s. One of their
findings was that indentation is better suited for mea-
suring nesting than the Halstead metric.

Based on the findings presented above, indentation
seems to be a good indicator for measuring nesting
and the shape of the source code seems to help orien-
tation.

2 The Mountain Outline

We propose a novel visualization of the source code
indentation to assist developers in source code orien-
tation and navigation. The visualization is created
by drawing the contour of indentation. Then this re-

29



L
—
r ==
I Iz
| ———]
— ______
|
|
i =
=
} —_
=
.=:"—j

>
-

=——]

B

200

Figure 1: The mountain outline for the BaseTestRunner class from JUnit 4. (1) shows the usual pattern for
simple methods (e.g. getter/setter), (2) highlights a problematic long and complex method.

sulting polygonal chain is rotated by 90 degrees anti-
clockwise. We call this rotated indentation contour
the mountain outline, because it reminds of a land-
scape outline of a mountain range ! .

Figure 1 shows a visualization using this mountain
outline of the BaseTestRunner class in JUnit 4. One
is able to directly identify simple methods (1) and
complex nested methods (2). The complex method is
over 50 lines long and contains 3 nested blocks. For a
developer this method would be a good starting point
for refactoring opportunities and for understanding
the complete class. One can also recognize a set of
shorter methods in the lines 170 till 230 between two
more complex methods.

A prototype for Eclipse provides this visualization
as an additional view that is connected to an editor.
One can navigate to a specific line by using the moun-
tain visualization. Further, the current selected line
is highlighted in the visualization.

3 Related Work

The SeeSoft tool by Eick et al.[2] provides a visual-
ization of source code lines. They use color to display
line oriented software metrics, e.g. time of change.

A thumbnail visualization of the source code was
presented by DeLine et al. [1]. In contrast to our
approach, they use the complete source code including
the content. One needs to study whether the use of
indentation provides a shape that is more stable over
time.

4 Future Work

A smaller user study of the mountain outline proto-
type is planned for April 2013 and a larger user study
for June. In this user study we plan to plan to ad-
dress the question, whether or not the prototype re-
duces navigation time and source code landmarks are
remembered by the participants.

In the future we plan to extend the mountain con-
tour to show the contour last seen(by the user) and
the current source code outline. This would allow to

IThis idea was also mentioned by R. C. Martin in the Clean
Coder videos in episode 3, http://cleancoders.com/

30

recognize old landmarks and a relocation of those on
the new contour.

The mountain outline uses the idea of humans eas-
ier perceiving landmarks for orientation in a horizon-
tal landscape. One needs to validate, if vertically
aligned source code and translating this into a hor-
izontal visualization has a negative impact on usabil-
ity.

One drawback of the outline are its limitations
when dealing with good quality code. Good code qual-
ity with short and simple methods results in a smaller
mountain outline and less outstanding landmarks. In
the future we plan to evaluate, if a mountain outline
in this case still improves orientation.

References

[1] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia,
S. M. Drucker, and G. G. Robertson. Code thumb-
nails: Using spatial memory to navigate source code.

In VL/HCC, pages 11-18, 2006.
[2] S. G. Eick, J. L. Steffen, and E. E. Sumner Jr.

Seesoft—A tool for visualizing line oriented software
statistics. IEEE Transactions on Software Engineer-

ing, 18(11):957-968, Nov. 1992.
[3] B. Elias. Eztraktion von Landmarken fir die Naviga-

tion. PhD thesis, Universitat Hannover, 2006.
[4] A. Hindle, M. W. Godfrey, and R. C. Holt. Reading

beside the lines: Using indentation to rank revisions
by complexity. In Science of Computer Programming,

volume 74, pages 414-429, May 2009.
[5] A. J. Ko, H. H. Aung, and B. A. Myers. Eliciting

design requirements for maintenance-oriented IDEs:
a detailed study of corrective and perfective mainte-

nance tasks. In ICSE, pages 126-135. ACM, 2005.
[6] R. C. Martin. Clean Code: A Handbook of Agile

Software Craftsmanship. Prentice Hall International,

2008.
[7] R. J. Miara, J. A. Musselman, J. A. Navarro, and

B. Shneiderman. Program indentation and compre-

hensibility. Commun. ACM, 26(11):861-867, 1983.
[8] J. O’Keefe and L. Nadel. The Hippocampus as a Cog-

nitive Map. Oxford University Press, 1978.
[9] Sun. Java Code Conventions, 1997.
[10] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li,

M. Lumpe, H. Melton, and J. Noble. Qualitas corpus:
A curated collection of java code for empirical studies.
In 2010 Asia Pacific Software Engineering Conference
(APSEC2010), pages 336-345, Dec. 2010.

Softwaretechnik-Trends 33:2, Mai 2013



	Using Mountain Visualizations for Orientation in Source Code
	Abstract
	1 Introduction
	2 The Mountain Outline
	3 Related Work
	4 Future Work
	References




