
Applications of Visualization Technology in Robotics
Software Development

Max Reichardt, Lisa Wilhelm, Martin Proetzsch, Karsten Berns

Robotics Research Lab
Department of Computer Sciences

University of Kaiserslautern, Germany
{reichardt, lisa.wilhelm, proetzsch, berns}@cs.uni-kl.de

Abstract: Control software for experimental autonomous robots is typically complex
and subject to frequent changes – posing numerous challenges for software engineers.
When based on general-purpose robotics frameworks, significant parts of such systems
are modular and data-flow-oriented – a natural fit for visualization in graph structures.
In this paper, we present approaches to visualize different aspects of robotics software
which proved helpful or even essential in our development process. Furthermore, we
briefly introduce central abstractions in our software framework which greatly facili-
tate generic solutions.

1 Introduction

Developing control software for autonomous robots is a complex task. Many non-
functional requirements such as efficiency, safety or fault-tolerance need to be dealt with.
Therefore, many robot controls are based on robotic frameworks. These integrate com-
monalities such as network interfaces, provide various general-purpose components, and
include tools that support application developers – possibly by visualizing certain aspects
of a system.

Robotic applications are data-flow-oriented up to a certain degree. Sensors continuously
provide values, while actuators regularly receive updated control values. This is reflected
in frameworks which can roughly be divided into two groups regarding the interfaces of
their basic application building blocks (“components”, “modules”, or “services”): object-
oriented interfaces with method calls and connector-style interfaces with connectible pins.
In the latter, whole applications are integrated by arranging entities in a data flow graph.
This is especially suitable for visualization in graphs. Some frameworks even provide
graphical programming facilities – not dissimilar to Simulink1 or LabView2. This is a
controversial topic in the robotics community – “one feature that is repeatedly proposed
to make robot programming easier is graphical programming, i.e. building systems by
connecting boxes with lines using some spatial layout tool. (. . . ) As anyone who has

1http://www.mathworks.com/products/simulink/
2http://www.ni.com/labview

167



used Simulink knows, complex programs quickly lead to cluttered screens and so lots of
time is spent arranging objects spatially: an arrangement that has no meaning at all for the
code” [VG07].

The next chapter deals with software visualization in popular frameworks. Then, relevant
abstractions in MCA, which we use for development, are introduced briefly – followed by
a coverage of some of our recent projects which have proven helpful in developing and
improving our software. Graphically rich tools for simulation or sensor data visualization
are not covered, since they are not directly related to software engineering problems. Nev-
ertheless, they are essential for the development process as well – particularly with respect
to testing.

2 Visualization in Popular Robotic Frameworks

Numerous frameworks have been developed in the past. In fact, “It is only a small over-
statement to say that almost every lab has brewed its own solution for robot control ar-
chitecture, middleware and software integration concepts” [SP07]. This overview con-
centrates a few well-known frameworks. While most frameworks provide facilities for
data visualization, robot operation, and simulators – visualization support directly target-
ing software engineering problems is less common. There are, however, many worthwile
possibilities – some of which are discussed in the next chapters.

A major target of Microsoft’s Robotics Developer Studio was making development of
robotic applications simpler. Part of this effort is the Microsoft Visual Programming Lan-
guage (VPL). It allows creating robotic applications graphically by instantiating building
blocks and connecting their inputs and outputs. Explicitly targeting “non-programmers”,
however, this language is hardly used in professional robotic projects to our knowledge.

The Player Project [GVS+01] is arguably the most well-known open source robotics
toolkit. Minimalism and simplicity being major design goals, it provides interfaces to a
wide range of robotics hardware without making prescriptions for the robotic applications
actually using them. Naturally, it cannot provide tools for visualizing these applications.

The open source robotics framework Orca [BKM+07] is an attempt to bring Component-
Based Software Engineering to the robotics domain. It includes some tools for manage-
ment of components, interaction with robots, and visualization of components’ internal
state. OrcaView2D is the most interesting regarding the latter – allowing any component
to render information to a two-dimensional map view using a generic interface.

FlowDesigner3 is a visual open source programming tool with similarities to Simulink
and LabView. The RobotFlow4 plugin is an attempt to utilize it for robotics software.
It is closely related to the MARIE framework [CLR07] – a major attempt to integrate
components from different frameworks. However, the latest release is from 2005.

3http://apps.sourceforge.net/mediawiki/flowdesigner/
4http://robotflow.sourceforge.net/

168



3 Visualizing MCA Applications

At our lab, we use the MCA2 framework that was developed at the FZI (Forschungszen-
trum Informatik) in Karlsruhe. Modifications lead to an independent branch (MCA2-KL5).
With many ideas for improvements, a new major release is currently under development.
Some of these improvements are already considered here.

Basic building blocks of every MCA application are modules. Such modules have in-
put and output ports that consume or provide data6. Connections between modules are
network-transparent, so distributed applications can be easily created. To structure appli-
cations, modules may be grouped in groups. Basically, a set of connected modules form
an application. On this level, an MCA application can be seen and visualized as a data
flow graph. With interfaces based on facilities provided by the framework, various kinds
of data can be collected and visualized in such a graph.

MCA Browser: Visualizing an application as a data flow graph is implemented in
the MCABrowser tool. It is frequently used in our development process and particularly
useful for checking that all modules are instantiated and connected correctly – as well as
tracking down malfunctioning modules that publish incorrect values. The tool is occasion-
ally improved and extended.

iB2C Extension: A recent such extension is the iB2C mode (see Fig. 1) for visualizing
behavior-based architectures [PLB07]. It displays additional information for modules that
implement a behaviour. This includes a behaviour’s activity, indicating its influence on the
system’s control output, and the target rating representing its contentment with the current
situation. The activation is determined by incoming signals and is an upper bound for the
activity. These values – which are common for all behaviour modules – are represented
as colored horizontal lines as illustrated in Fig. 1, providing a quick overview of each
behaviour’s state.

System Partitioning: A recurring question in our development process is how to
split up distributed applications. Network connections introduce latency and have limited
capacity. Modules that exchange a lot of data should preferably execute on the same
system. The same is true for modules that are part of a tight control loop – especially
if there are real-time requirements. Deciding which modules to run on which systems
tends to become less straightforward as systems grow. The long-term goal is that the
framework is able to do this automatically. Meanwhile, there is a recent experimental
enhancement to the MCABrowser that is meant to assist a developer with respect to this
topic. It visualizes the traffic between different modules (see Fig. 1). The traffic has two
dimensions – frequency of data exchange and size of transferred data per second. The
connection lines in the MCABrowser are colored blue when data is sent scarcely and red
when exchanged frequently. The average data size is reflected in the lines’ thickness.

Generic Graphical User Interfaces: Graphical user interfaces are regularly required
when testing and deploying a robot. Creating and changing these can be tedious – espe-

5http://rrlib.cs.uni-kl.de/
6In MCA2, such port data was limited to numerical values, whereas the next release supports objects of

arbitrary types. To exchange more complex data before, blackboards – areas of shared memory – had to be used.

169



170



171



Figure 3: Control network of the mobile robot ARTOS visualized with Graphviz

are typically more important than weak, non-regular oscillations and should be analyzed
further.

Visualization: The Boost Graph Library7 (BGL) is used for the internal representation
of the network. Fig. 3 shows a visualized control network that was created using the
graph visualization software (Graphviz)8. Groups are illustrated as black boxes. Modules
are represented as nodes labeled with their name and possibly frequencies, powers and
regularities of any detected oscillations. Oscillating modules are coloured purple. The
figure shows the path of an oscillation that is initially detected in a module in the middle
of the network (red border). It can then be traced upwards to another group – the oscillation
source – as well as downwards to a group responsible for controlling actuators.

4 Conclusion and Outlook

We presented several visualization approaches that help us coping with the complexity of
robotic applications. They scale reasonably well with growing systems. We claim that
a suitable uniform architecture, framework, or middleware is a fundamental factor for
these kinds of software visualization tools. It allows collecting various types of data in a
uniform way and across multiple projects – the latter increasing the return of investment for

7www.boost.org
8www.graphviz.org

172



developing such tools. There are certainly many more interesting areas for visualization
such as, for instance, profiling – e.g. illustrating how much processing power modules
consume and how much latency they introduce. In a current project, we plan improving
our tools in cooperation with our university’s computer graphics group. Early ideas include
overcoming group boundaries in the MCABrowser tool, as well as making it simpler to
add further visualization extensions.

References

[BKM+07] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Orebäck. Orca: A Component
Model and Repository. In Brugali [Bru07].

[Bru07] D. Brugali, editor. Software Engineering for Experimental Robotics, volume 30 of
Springer Tracts in Advanced Robotics. Springer - Verlag, Berlin / Heidelberg, April
2007.

[CLR07] C. Coté, D. Letourneau, and C. Ra. Using MARIE for Mobile Robot Component De-
velopment and Integration. In Brugali [Bru07].

[GVS+01] B. Gerkey, R. Vaughan, K. Sty, A. Howard, G. Sukhatme, and M. Mataric. Most valu-
able player: A robot device server for distributed control. In Proc. of the IEEE/RSJ
Internatinal Conference on Intelligent Robots and Systems (IROS), pages 1226–1231,
Wailea, Hawaii, October 2001.

[KCD+04] V. Kariwala, M. Choudhury, H. Douke, S. Shah, H. Takada, J. Forbes, and E. Meadows.
Detection and Diagnosis of Plant-Wide Oscillations: An Application Study, 2004.

[Kna07] C. Knapwost. Forward und Reverse Engineering in der Robotik. Diploma thesis,
Robotics Research Lab - University of Kaiserslautern, Mai 20 2007. unpublished.

[KRB08] J. Koch, M. Reichardt, and K. Berns. Universal Web Interfaces for Robot Control
Frameworks. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Nice, France, September 22-26 2008.

[OT06] P.F. Odgaard and K. Trangbaek. Comparison of Methods for Oscillation Detection -
Case Study on a Coal-Fired Power Plant. In Proceedings of IFAC Symposium on Power
Plants and Power Systems Control 2006, 2006.

[PLB07] M. Proetzsch, T. Luksch, and K. Berns. The Behaviour-Based Control Architecture
iB2C for Complex Robotic Systems. In 30th Annual German Conference on Artificial
Intelligence (KI), pages 494–497, Osnabrück, Germany, September 10-13 2007.

[SP07] A. Shakhimardanov and E. Prassler. Comparative Evaluation of Robotic Software In-
tegration Systems: A Case Study. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2007), San Diego, CA, USA, October 29-November 2 2007.

[THZ03] N.F. Thornhill, B. Huang, and H. Zhang. Detection of Multiple Oscillations in Control
Loops. Journal of Process Control, 13:91–100, 2003.

[VG07] R. Vaughan and B. Gerkey. Reusable Robot Software and the Player/Stage Project. In
Brugali [Bru07].

[Wil08] L. Wilhelm. Oscillation Detection in Behaviour-Based Robot Architectures. Diploma
thesis, University of Kaiserslautern, November 2008. unpublished.

173




