
 

 

Compositing User Interfaces in 
Partitioned In-Vehicle Infotainment  
Andreas Knirsch1,2, Andreas Theis2, Joachim Wietzke2, Ronald Moore2 

Centre for Security, Communications and Network Research, Plymouth University, UK1 

Faculty of Computer Science, Hochschule Darmstadt, DE2 

Abstract 

Automotive information and entertainment systems have become an integral part of a car’s human-
machine interface and already affect a prospective customer’s purchase decision. In-Vehicle Infotain-
ment systems combine an increasing number of software-based functionalities of varying importance 
and purpose on a shared hardware platform. This led to integrated modular architectures to achieve 
temporal isolation of different classes of applications, developed independently by multiple suppliers. 
Despite this partitioning on the software level, the user interface has to provide all functionality in a 
uniform way, blended into the manufacturer’s superordinate usage concept. Furthermore, allocation 
and presentation of graphical content has to respect the car’s operating state along with the user’s pref-
erences and system interaction. In the following, an approach is presented that enables the integration 
of segregated and independently rendered graphics into a uniform graphical user interface, while con-
sidering a multi-display environment and flexible allocation of different views. Relevant requirements, 
a prospective architecture, and a prototypical implementation are presented to foster the provisioning of 
the required computational and graphical power to enable future In-Vehicle Infotainment systems. 

1 Introduction 

Nowadays, 90 percent of the innovations within the automotive domain are attributed to 
electronics. Hence, software (SW) based functions became a notable success factor for au-
tomobile manufacturers. With a continuously increasing share of a car’s SW attributed to In-
Vehicle Infotainment (IVI) systems, their engineering and even more their qualities affect the 
economic success of the manufacturer. From a user perspective, the user interface (UI) is the 
actual point of contact with those systems. The design of such systems has to cover demands 
for an appealing front-end to foster a positive user experience (UX). Furthermore, the UI has 
to reflect the system’s functional purpose with regard to the safety-critical environment. 
Nevertheless, the question how IVI systems can efficiently exploit their functionality and the 
capabilities of current hardware (HW) platforms is of primary importance. 

In the past, IVI systems were rather isolated. Their main task was to provide information and 
entertain the car’s occupants. Within the last decade, they have become an integral part of the 
in-vehicle system’s network and enable the driver to configure and control automotive func-

S. Boll, S. Maaß & R. Malaka (Hrsg.): Workshopband Mensch & Computer 2013 
München: Oldenbourg Verlag, 2013, S. 63–70 



64 Knirsch, Theis, Wietzke & Moore 

 

tions. They are even about to merge with other systems, like the instrument cluster. This 
results invariably in new requirements as regards safety and security. Current developments 
make security particularly important: IVI systems feature the communication node between 
components attached to automotive fieldbus and infrastructure-based wireless communica-
tion networks. The interconnection with other systems within the vehicle as well as the envi-
ronment enables new services and functionality, including future Advanced Driver Assistant 
Systems (ADAS) (Bolle 2011). This evolution expands the scope of application and leads to 
the adoption of the wider and more appropriate term In-Car Multimedia (ICM) systems, 
which is used in the following.  

Moreover, the interconnectivity allows future ICM systems to update both data and function-
ality dynamically during operation. This includes, for example, geographical maps, traffic 
information and applications (or “apps” as provided for consumer electronics (CE) using 
“app-stores/-markets"). The evolution from static functional extends to ICM devices that can 
be updated and enriched regularly or on-demand is a major change in the automotive do-
main. With respect to the usual system lifecycle of several years, the UX can be efficiently 
maintained through the entire vehicle lifetime. Hence, this evolution has significant impact 
on the user interaction. In current systems the user is able basically to configure functionality 
delivered with the vehicle. Future ICM systems will provide capabilities to adapt the func-
tional extent to personal needs or favors. This creates a new dimension of customization. 

Figure 1: Partitioning Infrastructure 

However, a dynamic update of functionality contains risks relevant for safety. Hence, the 
dynamic functionality may only include non-critical applications. Nevertheless, non-reliable 
functionalities within such “after-market apps” potentially (a) distract the driver or (b) inter-
fere with critical applications due to the use of shared HW resources. The latter is caused by, 
for example, various independent SW suppliers causing non-functional incompatibilities, or a 
non-uniform and unpredictable set of applications due to the users' decisions about what to 
install and run. Whereas (a) can be covered by a thorough application-specific quality assur-
ance, the risks related to (b) have to be mitigated by an appropriate infrastructure of the ICM 
system. Such an infrastructure has to segregate functionalities of different criticality, or those 
that are trusted and those that are not trusted by the vendor of the ICM system. Approaches 
for segregating functionalities by time and space partitioning via virtualization, the use of 
different operating systems (OS), and exploiting the capabilities of real-time scheduling to 
define execution domains (ED), while maintaining efficient intercommunication facilities 
within the context of ICM systems are presented in (Vergata et al. 2011). Figure 1 depicts 
exemplary an architectural overview of such a partitioned system. 

The segregated computation mitigates risks regarding negative interferences between differ-
ent applications and error propagation due to an infrastructure based encapsulation. Still, the 
SW system shares a common HW platform, including shared resources. The allocation and 
arbitration of such shared resources potentially cause temporal interference as well. For re-



Compositing User Interfaces in Partitioned In-Vehicle Infotainment 65 

 

sources that allow only an exclusive usage at any given time, a priority-based arbiter may 
lead to more predictable system behavior, as discussed in (Knirsch et al. 2012). Time slicing 
is not appropriate for shared resources that facilitate multiple accessing applications at the 
same time. This applies especially for data sinks that allow the blending of data streams, such 
as video and audio. However, these types of data are significant for building an appealing UI. 
Hence, these have to be considered for establishing a comprehensive infrastructure relying 
on the segregation of functionality while improving the UX. 

Based on the independent development of the SW components, the UIs are built inde-
pendently from the core functionalities. Nevertheless, they have to comply with design speci-
fications predefined by the car manufacturer or original equipment manufacturer (OEM) to 
implement a homogeneous “look and feel” and user interaction. With a rising number of 
applications and after-market “apps”, a comprehensive UI component covering all visual 
presentation and user event handling is no longer feasible. Each application has to provide its 
own UI to be integrated with – or blended into – the existing ones. This creates a demand for 
a graphics compositing instance as a segregated component that can cope with multiple 
graphics sources and the related user interaction (the “back channel”) for user presentation 
and event handling, respectively. Such an instance may act as manager and define what to 
visualize, where, and in which presentation mode, whereas the graphics sources are segregat-
ed SW components. A conceptual architecture for such an instance is presented in the follow-
ing. The goal is to pave an integration path for independently developed components while 
enforcing individual run-time polices. 

2 Related Work 

The partitioning of SW within vehicles is not a new concept. The Automotive Open System 
Architecture (AUTOSAR) (Bunzel 2011) is a standardized architecture, development ap-
proach and application programming interface (API). It fosters an independent development 
using well-defined interfaces to enable integration onto shared HW platforms. Therefore, 
abstraction layers help to decouple SW from HW specifics that makes AUTOSAR appear as 
underlying platform to SW components. Although the target is very similar to the earlier 
described segregation, it does not detail compositing of graphics to a shared rendering de-
vice. Nevertheless, the concept discussed in the following might be transferred to an AU-
TOSAR conform ICM system using the provided API of AUTOSAR. 

Open vehicular SW platforms appeared more recently. Similar to AUTOSAR, they are in-
tended to create abstraction layers that provide access to HW resources and offer domain 
specific SW services. They aim for reduction of application complexity while fostering par-
allel execution and reuse of SW components. However, “open” means the platform specifica-
tion is freely available, which enables everyone to develop platform compatible SW compo-
nents. Prominent open automotive platforms for ICM are AutoLinQ™, GENIVI and Ford 
SYNC® (Holle et al. 2011). A side effect of the open platform trend is the introduction of 
Linux based OSs into the vehicle, which is also applied for evaluation of the herein proposed 
compositing architecture. Despite the fact no specific platform is addressed by the latter, it 
may constitute a beneficial enhancement to them to enable independent UIs. GENIVI’s “IVI 



66 Knirsch, Theis, Wietzke & Moore 

 

Layer Management” project addresses compositing and separation of HMI and layer man-
agement, but does not yet cover efficient inter-ED UI provisioning (GENIVI 2013). 

QNX Software Systems propose their QNX CAR HTML5-based HMI framework to ease 
integration of applications from CE space (Gryc & Lapierre 2012). A compositing of differ-
ent UI components might be realized by use of different in-vehicle provisioned web-services, 
each offering a particular functionality. A “browser” acts as a central compositor. This posi-
tively affects the development process through the use of web techniques and may ease the 
transfer of a predefined design to a working UI. Different service providers could be segre-
gated into dedicated partitions, with the freedom to utilize different OSs. However, the major 
part of the UI’s content has to be rendered within the partition of the “browser”. Hence, there 
is more computational power required for the compositor. Furthermore, a certain service 
provider may interfere with a more critical one due to the need for interpretation and compu-
tation of the content to visualize, which undermines the concept of partitioning. Therefore, it 
does not provide an adequate solution, although within layered system architectures HTML5 
might be applicable as long as the rendering is performed within a segregated partition.  

There already exist various graphics compositing window managers for different OSs and 
providing different features. The latter address, for example, improved accessibility, simpli-
fied use and so called “eye candy” to enhance UX. One of the more recent developments is 
Wayland (Høgsberg 2012), which focuses on a lightweight and efficient internal communica-
tion and, therefore, is also applicable to resource-constrained embedded systems. Wayland is 
also incorporated into the “IVI Layer Management” of GENIVI. Unfortunately, Wayland 
does not natively facilitate an inter-partition communication. Nevertheless, it is used for the 
evaluation of the herein proposed concept. Therefore, fundamental communication compo-
nents were substituted or enhanced. 

3 Architectural Drivers for ICM Compositing 

The following constraints lay the foundation for the architecture of an ICM Compositor. 

The system’s functionality is partitioned into segregated execution domains (EDs) to ensure 
local run-time policies. These include predefined temporal behavior derived from given 
priority policies and priority levels. The intention is to prevent effectively negative interfer-
ence between different functionalities – or applications – deployed to different EDs. The 
partitions may be implemented using virtualization techniques or other, lighter weight encap-
sulation techniques. Both options do benefit from and are enabled by multicore HW architec-
tures. This implies that the different partitions do not share a common OS (or kernel space), 
meaning that the options for inter process communication (IPC) are limited. However, effi-
cient communication is necessary to utilize and benefit from the common HW infrastructure. 

With respect to the varying safety relevance of different applications, the intercommunica-
tion between EDs has to meet certain security related requirements. It has to be ensured that 
a dynamically installed or updated application cannot cause an error within a safety relevant 
ED (e.g. instrument cluster) or the compositing ED. 

Nowadays, appealing UIs often rely on 3D graphic effects. Therefore, a graphical processing 
unit (GPU) is usually used as an accelerator to relieve the general purpose CPU. By parti-
tioning the system into several EDs that independently render graphics, a single GPU has to 



Compositing User Interfaces in Partitioned In-Vehicle Infotainment 67 

 

be shared between multiple OSs, introducing a significant bottleneck. Alternatively, only one 
ED benefits from the GPU, while the other ED render their graphics without acceleration. 
Both options are unsatisfactory. For efficient compositing the architecture may employ sev-
eral GPUs as accelerators for different EDs. 

In summary, the integrated modular architecture applied to highly interactive ICM systems 
requires partitioning. This is caused through the functionalities’ different safety relevance 
and hence, the need to prevent negative interference. Demands for uniform and compelling 
UIs create requirements for efficient graphic processing. Using dedicated CPU cores for 
segregated computation is no solution as long as more than one ED relies on graphic acceler-
ation. Thus, we propose the utilization of multiple GPUs to maintain consistently the segre-
gated architecture also for graphics processing. This means decreasing computational load 
for the CPUs related to graphics processing and hence more effective utilization of HW ca-
pabilities. Consequently, negative inter-ED interference is mitigated and additional graphics 
acceleration for future highly interactive ICM UIs is made available. 

4 ICM Compositing Infrastructure 

The design is derived from the architectural drivers defined above. Basically, it consists of 
three conceptual components as detailed in the following and depicted in Figure 2: 

UI application (UI-APP): an independent functionality providing an UI artifact. Such an 
artifact (or surface) may implement comprehensive and extensive menu structures providing 
access to a set of applications, or only a section of a certain UI screen that has to be blended 
with other UI-APP’s artifacts. This means each application renders its own subset of the UI. 
UI-APPs are distributed to different EDs, whereas each ED may benefit from a dedicated 
GPU. The combination of all UI-APPs forms the UI of the ICM system, which means that 
they represent the source for graphics and the sink for related user events. However, all UI-
APPs must comply with the design concept of the overall system. 

Compositor: a super-ordinated instance that blends the artifacts provided by different UI-
APPs. Therefore, it may, for example, resize (delegated to UI-APP), transpose, and project 
the graphics with perspective. These artifacts can be regarded as active video streams. This is 
comparable with applying a texture to a 3D model, whereas here the texture is not an image 
but an animated and active UI artifact. Active means the UI artifact is still receiving user 
events (e.g. touch-events). The manipulation of the provided artifact issues demands for a 
dedicated accelerating GPU for the compositor. Furthermore, the graphical artifacts are re-
ceived as plain pixel buffers. This obviates the need to interpret information and hence miti-
gate security issues such as code injection. However, it also means additional efforts, for 
instance, to changing perspective of displayed artifacts. Nevertheless, using plain pixel buff-
ers has great advantages in terms of loose coupling, maintaining a high degree of freedom for 
the UI-APPs, but still ensuring compatibility. Additionally, the compositor delegates incom-
ing user events to the related UI-APP, comparable with an input-event mapper. An ICM sys-
tem employs a single compositing instance, communicating with all UI-APPs. Hence, the 
compositor is the single instance that is aware of what artifacts are actually displayed to the 
user. Therefore, it may also map generic input events (e.g. buttons on a multifunction steer-



68 Knirsch, Theis, Wietzke & Moore 

 

ing wheel) that are related to the current system context to the corresponding UI-APP or 
respective ED. This also applies for input preprocessed by speech- or gesture-recognition.  

Intercommunication: the facilitator of the compositing infrastructure is an efficient commu-
nication. Ideally, by use of a shared memory region that is accessible by both UI-APPs and 
the compositor. Basically, this is needed to transfer pixel buffer information from UI-APPs to 
the compositor with adequate throughput to achieve predefined frame rates. The intercom-
munication also transfers user events from the compositor to UI-APPs, which requires low 
latency to provide appropriate responsiveness.  

  

Figure 2: ICM UI Infrastructure 

5 Evaluation 

A prototype implementation has been built to facilitate evaluation of the proposed design and 
demonstrate its feasibility. It is not extensive and does not yet provide all functional capabili-
ties of a real-world ICM system. However, the previously defined architectural drivers are 
covered to address essential features from an architectural viewpoint. 

The prototype implementation has to feature at least n EDs, with n ≥ 2. ED1 contain a com-
positor that is blending the independently rendered graphics for visualization on a display. 
ED1 is connected to a dedicated GPU to support the modification of artifacts. ED2..n contain 
UI-APPs rendering 3D graphics, also using dedicated GPUs for graphics acceleration. All 
EDs run different instances of an OS and have access to a shared memory. This constitutes 
the minimum criteria to verify the applicability of the above described approach. In the fol-
lowing the actual implementation and its constraints of the prototype are outlined. 

The partitioning in the prototype relies on virtualization, where each ED is encapsulated 
within a dedicated virtual machine (VM). All virtual machines are connected to a shared 
memory region to prepare the prerequisite for the intercommunication component. This is 
realized using KVM as virtual machine monitor in conjunction with a virtual inter-VM 
shared memory PCI device (Kivity et al. 2007, Macdonell 2011). The platform of the host 
system provides several GPUs passed through to respective VMs for dedicated acceleration. 
Currently, a GNU/Linux based OS is utilized for the compositor’s ED and UI-APPs’ EDs. 
The prototype also supports Android OS based EDs acting as UI-APP to demonstrate the 
blending of graphical artifacts which are rendered by different OSs. The intercommunication 
is realized by using Wayland with enhancements to utilize inter-VM shared memory. The 
implementation of both the compositor and UI-APPs is based on Weston. Within Android the 
system service for rendering the UI is modified to clone and route surfaces to the compositor 
using the intercommunication component of the proposed design (Theis 2013). The surfaces 
are routed without changing the Android applications. 



Compositing User Interfaces in Partitioned In-Vehicle Infotainment 69 

 

Figure 3: Exemplary ICM UI with different UI-APPs 

Figure 3 depicts a prototype UI layout that relies on various UI artifacts rendered by different 
EDs. The selection and appearance of the content within the center console is adaptable, 
whereas the instrument cluster must comply with regulations and laws. All UI artifacts are 
fully active and may be transposed in size and perspective by the compositor instance inde-
pendent of the UI-APP. Certain content is additionally displayed on the instrument cluster, 
dependent on the vehicle’s or applications’ context or user interaction. 

The prototype practically demonstrates how a compositor along with graphic acceleration 
could enable modular UIs without breaching partitioning concepts. 

6 Conclusion and Outlook 

Appealing UIs are important features of future ICM systems. In parallel, the increasing ex-
tent of functionality integrated into such systems creates new challenges. Functionality varies 
in criticality in terms of safety. This leads to time/space separated SW architectures to enable 
strong enforcement of run-time polices. Such a partitioned architecture counteracts the reali-
zation of a comprehensive, coherent, and compelling UI, which has to appear as an ensemble 
of one piece. This is amplified as long as only one graphic accelerator is available that has to 
be shared by applications executed in parallel on multiple CPU cores. The architectural de-
sign approach presented addresses this issue and provides an integration path for individually 
developed SW components of different criticality. Relevant architectural drivers are dis-
cussed and the essential design components are illustrated. A prototype supports the evalua-
tion of the design by use of a functional proof-of-concept. 

Furthermore, research is planned to incorporate partitions that employ a real-time OS and a 
more thorough quantitative evaluation of different opportunities to accelerate 3D graphics 
processing. Additionally, the proposed concept does not yet cover the blending of audio 
sources, which is necessary for a comprehensive UI compositor.  

References 

Bolle, M. (2011). Connected Vehicle: i2Car or Car2i? In carIT-Kongress – Mobilität 3.0. automoti-
veIT, Media-Manufaktur. 

Bunzel, S. (2011). AUTOSAR – the Standardized Software Architecture. Informatik-Spektrum. vol. 34. 
Springer. pp. 79–83. 



70 Knirsch, Theis, Wietzke & Moore 

 

GENIVI (2013). GENIVI Open Source Projects: IVI Layer Management. Accessed 01 July 2013 
<http://projects.genivi.org/ivi-layer-management> 

Gryc, A. & Lapierre, M. (2012). Warum HTML5 die HMI-Technologie der Zukunft ist. Whitepaper. 
Ottawa: QNX Software Systems. 

Høgsberg, K. (2012). Wayland – A new graphics architecture. In Free and Open source Software 
Developers' European Meeting (FOSDEM). Brussels. 

Holle, J., Groll, A., Ruland, C., Cankaya, H. & Wolf, M. (2011). Open Platforms on the Way to Auto-
motive Practice. In 8th ITS European Congress, Lyon. 

Kivity, A., Kamay, Y., Laor, D., Lublin, U. & Liguori, A. (2007). kvm: the Linux Virtual Machine 
Monitor. In Proceedings of the Linux Symposium, vol. 1. pp. 225–230. 

Knirsch, A., Schnarz, P. & Wietzke J. (2012). Prioritized Access Arbitration to Shared Resources on 
Integrated Software Systems in Multicore Environments. In 3rd IEEE International Conference on 
Networked Embedded Systems for Every Application (NESEA). IEEE Computer Society. pp. 1-8. 

Macdonell, A. C. (2011). Shared-Memory Optimizations for Virtual Machines. Ph.D. dissertation, 
Department of Computing Science, University of Alberta. 

Theis, A. (2013). User-Interfaces einzelner Android-Apps auf einem entfernten Wayland-Compositor. 
MSc Thesis. FB Informatik, Hochschule Darmstadt. 

Vergata, S., Knirsch, A. & Wietzke J. (2011). Integration zukünftiger In-Car-Multimediasysteme unter 
Verwendung von Virtualisierung und Multi-Core-Plattformen. In Echtzeit, Springer.  

Contact 

Andreas Knirsch, E-Mail: andreas.knirsch@plymouth.ac.uk 


