
Valid Updates for Persistent XML Objects

Henrike Schuhart and Volker Linnemann

Institut für Informationssysteme
Universität zu Lübeck

Ratzeburger Allee 160, D-23538 Lübeck, Germany
{schuhart|linnemann}@ifis.uni-luebeck.de

Abstract: XML has emerged as the industry standard for representing and exchanging
data and is already predominant in several applications today. Business, analytic and
structered data will be exchanged as XML between applications and web services.
XQuery is a language designed and developed for querying, filtering and generating
XML structured data and is currently being standardized by the World Wide Web
Consortium(W3C). XQuery seems to become the query language in context of (native)
XML databases. Moreover in the context of document management XQuery seems
suitable for querying large collections of documents with more irregular and deeply
nested data structures. Despite these promising features XQuery or more precisely its
FLWOR expression lacks of any update capability.

In this paper we present important results concerning the development of XOBEDBPL
(XML OBjEcts DataBase Programming Language). XOBEDBPL is the successor of
the XOBE project. XOBE integrates XML and XPath into the Java programming
language. In XOBEDBPL XML objects can become persistent. Moreover, a new fea-
ture in XOBEDBPL is the integration of xFLWOR(extended FLWOR) expressions for
updating and querying XML objects. XML updates and queries in XOBEDBPL are
statically typechecked. Finally we perform experiments with the XOBEDBPL proto-
type showing that the performance of low level API-based interfaces can be improved,
as well as the performance of related approaches.

1 Introduction

XML plays an important role for operational information systems and internet data. Due
to this fact, there is an emerging amount of software for generating and manipulating
XML documents. Therefore, programming language concepts and tools for this purpose
are needed. Most of the approaches that are currently in use are not sufficient, since they
cannot guarantee that only valid XML documents are processed and especially result from
update operations. A valid XML document in this context means a document which is
correct according to a given language description or schema. In this paper a schema de-
notes either an XML Schema or an XML Document Type Definition(DTD). If a document
is valid, it is an element of the language defined by the schema. Tools and languages
which do not guarantee the validity of generated XML documents at compile time have to
execute extensive runtime tests.

245

Our ultimate goal is to develop a database programming language for XML applica-
tions by extending the general-purpose language JAVA. In the XML OBjEcts(XOBE)
project[Ke03, KL03] XML is integrated into JAVA by defining XML objects representing
XML fragments and by treating them as first-class data values. Accessing XML objects in
XOBE is realized by integrating XPath.

In this paper we wish to introduce the successor project XOBEDBPL offering

1. update operations for XML objects

2. static type analysis for these update operations guaranteeing valid updated XML
objects.

Update operations in XOBEDBPL are syntactically realized by extended FLWOR[W304]
(xFLWOR) expressions. xFLWOR expressions support inplace updates in XOBEDBPL.

XOBEDBPL provides a type safe general basis for any application involving XML and
persistent XML, including web services and servlets based on XML databases.

Contributions of this paper. This paper introduces XOBEDBPL by an example taken
from the XMark[SWK+02] project dealing with an auction scenario. Moreover this pa-
per formally presents xFLWOR(extended FLWOR) expressions and type inference rules
designed for type safe querying and updating (persistent) XML structured data. Finally
we present experimental results showing that XOBEDBPL attains the performance of tradi-
tional low level API-based solutions as well as related approaches.

A running prototype of the XOBEDBPL system is available including a connection to a
native XML database.

This paper is organized as follows. In Section 2 we give an overview of related work re-
garding XML in programming languages, persistent XML as well as aspects of updating
XML. In Section 3 we give a brief review on the integration of XML objects in XOBE. The
central section of our paper is Section 4, where we present new features in XOBEDBPL,
more precisely persistent XML objects, xFLOWR expressions and type inference rules
used in XOBEDBPL which are suitable for type safe updates on (persistent) XML struc-
tured data. Section 5 gives a survey of the architecture of our XOBEDBPL prototype im-
plementation and provides some details of the XOBEDBPL preprocessor. In Section 6 we
finally present some experimental results concerning the performance of valid updates in
XOBEDBPL, low level API-based solutions and related approaches. Concluding remarks
and an outlook for future work finish the paper.

2 Related Work

XML in Programming Languages. The most elementary way to deal with XML frag-
ments is to use ordinary strings without any structure, i.e. Java Servlets [Wi99]. Java
Server Pages [PLC99] provide an improvement by allowing to switch between XML parts
and Java by using special markings. All these approaches share the disadvantage that not

246

even well-formedness is checked at compile time.
Low-level-binding approaches like the Document Object Model DOM [W398] or JAVA
DOM (JDOM) [JD] provide classes for nodes in an XML document thus allowing to ac-
cess and manipulate arbitrary XML fragments by object oriented programming. Low-level
bindings ensure well-formedness of dynamically generated documents at compile time,
but defer validation until runtime. The ECMAScript language extension for XML[Ec04]
integrates the construction and manipulation based on a tree-like navigation of XML ob-
jects into ECMAScript[Ec99], validation against an XML language description is not sup-
ported.
High-level bindings [Bo02] like Sun’s JAXB, Microsoft’s .Net Framework, Exolab’s Cas-
tor, Delphi’s Data Binding Wizard and Oracle’s XML Class Generator [Su01, Mi01, Ex01,
Bo01, Or01] assume that all processed documents follow a given schema. This description
is used to map the document structure onto language types or classes reproducing directly
the semantics intended by the schema. Apache’s XML Beans[Ap03] offer a DOM-like
tree navigation API to underlying XML documents or additionally generate a set of Java
classes and interfaces corresponding to XML schemas, if XML schemas are compiled. A
third API supports XQuery. Validity at compile time is only supported up to a limited
extent depending on the selected language mapping.
Recently, the aspect of guaranteeing the validity of XML structures at compile time gained
some interest. The XDuce language [HP03] is a special functional language developed as
an XML processing language. XML elements are created by specific constructors. The
content can be accessed through pattern matching. XDuce supports type inference and
performs a subtyping analysis to ensure validity of XML expressions at compile time. The
subtyping algorithm is implemented on the basis of regular tree automata. The Xtatic
project [GP03] is the successor of XDuce. The main purpose of Xtatic is to couple
the concepts of XDuce with the object oriented programming language C#. Xtatic has
similar goals as XOBEDBPL, however, Xtatic is still in an early stage and, in contrast
to XOBEDBPL, Xtatic does not support XPATH. BigWig [BMS02] is a special program-
ming language for developing interactive web services. JWig [CMS03] is the successor
of BigWig integrating the XML-specific parts of BigWig into JAVA. JWig is quite close
to XOBEDBPL. The main difference in JWig is that there is only one XML type. Typed
XML document templates with gaps are introduced. In order to generate XML documents
dynamically, gaps can be substituted at runtime by other templates or strings. For these
templates JWig validates all possibly dynamically computed documents according to a
given abstract DTD by data flow analysis. This data flow analysis is rather time consum-
ing. In the Xact project [KMS04] JWig’s validation algorithm is extended to the problem
of static analysis of XML transformations in JAVA. As in XOBEDBPL, XPath is used for
expressing XML transformations. XJ [HRS+03], a new project by IBM research, inte-
grates XML into Java concentrating on traversing XML structures by using XPath. The
distinguishing characteristic of XJ is its support for inplace updates. Xen [MSB03] is an
integration of XML into popular object-oriented programming languages such as C# or
JAVA currently under development at Microsoft Company. Xen uses XML constructors
similar as XOBEDBPL’s XML object constructors. XL [FGK02] is a special programming
language for the implementation of web services. It provides high-level and declarative
constructs adopting XQuery [W304]. Additionally imperative language statements are

247

introduced making XL a combination of an imperative and a declarative programming
language.
Updates in XML. The Document Object Model DOM [W398] offers low-level updates,
which ensure well-formedness but no validation. There are several approaches dealing
with updates for XML in the context of XQuery. Extending XQuery to support updates
is proposed in [TIHW01, Le01, W302]. The syntactic proposal made in [TIHW01] is
adopted in this paper. Basically [TIHW01] deals with the mapping of these update expres-
sions to SQL. Any validation of updates is omitted. In [BA03] updates are checked before
execution but this happens at runtime. The language introduced in [SHS04] is based on
proposals in [W302] and provides XML update support tightly coupled with XQuery it-
self. Validity checking is done during the update execution phase. In [SKC+03] updates
as defined in [TIHW01] are rewritten at compile time but validity checking is done at run-
time. In [KLL03, PV03, YXGZ03] validity of updates is checked upon the resulting XML
documents or respectively the resulting XML data. A declarative XML update language
is proposed in [LLW03]. XML updates in XML syntax are proposed in the XUpdate
project[XM04]. Contrary to all approaches mentioned here XOBEDBPL integrates high-
level XML updates into JAVA and checks their validity at compile time.
Persistent XML. For storing XML structures persistently several approaches exist. One
approach is to map XML structures to relational tuples or blobs and store them in an ob-
ject relational data base. For example, Oracle [Or03, MB03] and DB2 [IB, CX00] belong
to this group of systems. Although Oracle extends SQL to provide support for XPATH
[W399], application programs work with the provided structures by using conventional
tools like Java Database Connectivity JDBC. JDBC does not provide any facilities to guar-
antee that the application program works only with valid XML structures. This means that
either there is no validation or validation has to be performed on demand at runtime for the
whole document. In contrast to XOBEDBPL this means that validity cannot be guaranteed
at each step of the XML generation and manipulation. The same holds in the case when
the application program does not work with tables but uses exported XML structures. In
this case, conventional tools like DOM [W398] or SAX [xml] are used. DOM and SAX do
not allow to check the validity of XML structures at compile time, i.e. runtime validation
is necessary.
Another group of approaches is known as the group of native XML data base systems.
Prominent examples are Tamino [Sc01],Xindice[Ap03], Infonyte DB [In03] and Natix
[FHK+02]. These systems do not use relations or objects, instead, they store XML struc-
tures directly. Most systems use application programming interfaces that base on DOM
or SAX, i.e. there is no validity checking at compile time. Moreover, DOM and SAX are
rather low level interfaces requiring a lot of programming. An exception is Xindice[Ap03]
which supports XUpdate[XM04]. To the best of our knowledge, there is no system with
an application programming interface that allows checking the validity of XML structures
statically at compile time of the application program.

248

3 Review on XML Objects

In this section we briefly summarize the syntax and semantics of XML Objects in XOBE
in an informal manner, because XOBEDBPL is based on XOBE. A more detailed introduc-
tion can be found in [Ke03] and [KL03]. XOBE extends the object oriented programming
language JAVA by language constructs to process XML fragments in particular XML doc-
uments. XPATH[W304] is used for traversing XML objects.

In XOBE we represent XML fragments, i.e. trees corresponding to a given schema by
XML objects. Therefore, XML objects are first-class data values that may be used like
any other data value in JAVA. The declared schema is used to type different XML objects.

Throughout this paper we use the auction schema of the XMark[SWK+02] project as
the basis for our examples. The XMark database models an Internet auction site. The
main elements are: item, open auction, closed auction, person and category. A schema
description of elements and types used in this paper can be found in the appendix.

Listing 1 introduces the most important features of XOBE. In line 7 an XML object of
type person is created with a so-called XML constructor. The type declaration person of
variable p in line 2 is an abbreviated version. In general the type declaration of an XML
variable starts with the keyword xml followed by square brackets. Within the brackets
either a single schema type identifier followed by an optional star or a choice of them is
used to type the XML variable. XML objects can be accessed by an XPath expression. In
line 3 a previously declared XML object auctionSite of type site is searched whether the
new person already exists. Only if the result is negative, the new XML object person is
created and returned.

1 p e r s o n c r e a t e P e r s o n (S t r i n g p name , S t r i n g p ema i l , S t r i n g p i d){
2 p e r s o n p ;
3 xml<p e r s o n∗> p e r = $ a u c t i o n S i t e / / p e r s o n [@id={ p i d }] $;
4 i f (p e r . g e t L e n g t h () >0) re turn n u l l ; / / pe r s on a l r e a d y e x i s t s

6 / / new per s on i s c r e a t e d
7 p = <p e r s o n @id={ p i d}>
8 <name>{p name}</name>
9 <email >{p e m a i l}</email>

10 </ pe rs on >;

12 re turn p ;
13 }

Listing 1: XOBEDBPL method createPerson

4 Updates in XOBEDBPL

In this section we concentrate on XOBEDBPL and its new features: xFLWOR(extended
FLWOR) expressions for type safe querying and updating persistent XML objects. As
introduced in Section 3 type safe extraction of XML values can be done by using XPath. In
order to execute more complex queries, especially in the context of persistent XML objects
stored in a database, XOBEDBPL integrates extended FLWOR(xFLOWR) expressions. In

249

contrast to FLWOR expressions xFLWOR expressions overcome read-only limitations and
support update operations on XML data.

Persistent XML Objects. In this passage we want to explain briefly how we make XML
objects persistent. As explained later in section 5 about implementation details, XML
objects are internally represented as DOM [W398] objects at runtime of any XOBEDBPL
program. Since there already exists a lot of solutions for making DOM objects persistent,
we use a native XML database to realize persistency. Further aspects like transactions and
a more sophisticated persistence mechanism are beyond the scope of this paper.

4.1 Update expressions

Now, that we have explained how XML objects can become persistent and how these per-
sistent XML objects are accessed in a XOBEDBPL program we introduce the xFLWOR
expressions. xFLWOR expressions in XOBEDBPL are supposed to query and update per-
sistent XML objects. xFLWOR expressions in XOBEDBPL adopt syntactical proposals of
[TIHW01] to extend XQuery’s [W304] well-known FLWOR expression construct. In this
approach any RETURN clause can optionally be replaced by a so-called UPDATE clause.

Definition 4.1 (xFLWOR expression) An xFLWOR expression is defined by the following
grammar:

<xFLWOR> → (<LetClause> | <ForClause>)+
<WhereClause>?
<OrderByClause>?
(<ReturnClause> | <UpdateClause>)

�

All nonterminals except <UpdateClause> are defined exactly as in XQuery’s FLWOR
expression grammar[W304]. An <UpdateClause> is based on the definition:

Definition 4.2 (UPDATE clause)

An UPDATE clause is defined by the following grammar:

<UpdateClause> → UPDATE <Variable> <subOp> (,<subOp>)∗
<subOp> → <InsertOperation>

| <DeleteOperation>
| <RenameOperation>
| <ReplaceOperation>

<InsertOperation> → INSERT <Content>
((INTO|BEFORE|AFTER) <LocationPath>)?

<DeleteOperation> → DELETE <LocationPath>
<RenameOperation> → RENAME <LocationPath> TO <Name>
<ReplaceOperation> → REPLACE <LocationPath> WITH <Content>

�

The grammar states that an UPDATE clause is initiated by the keyword UPDATE followed
by a variable name upon which the update is performed(in the following also called update
target). The update operation is described by a sequence of fundamental suboperations, at
least one suboperation must be given. The variable being the target of the update operation

250

must be formerly defined and has to be either an XML object or a list of XML objects.

Each suboperation is performed successively upon the XML object(s).

The <Content> in XOBEDBPL is a previously defined XML variable and
<LocationPath>s are XPath expressions selecting descendant objects of the update
target. It is important to notice that the XPath expressions are limited to those selecting
descendants or childs, because any other context cannot be guarenteed to exist for XML
objects in a XOBEDBPL program at runtime.

1 synchronized i n t b i d (S t r i n g p id , i n t i n c r , S t r i n g a i d){

3 / / c a l c u l a t e new c u r r e n t
4 xml<c u r r e n t∗> c u r = $ a u c t i o n S i t e / / o p e n a u c t i o n [@id={ a i d }] / c u r r e n t $;
5 c u r r e n t n c u r r e n t = <c u r r e n t >{c u r . i t e m A s I n t (0) + i n c r }</ c u r r e n t >;
6 / / c r e a t e new b i d d e r
7 b i d d e r b i d = <b i d d e r>
8 <da te >{g e t D a t e () }</ da te>

9 <t ime>{getTime () }</ t ime>

10 <p e r s o n r e f p e r s o n={ p i d}/>
11 <i n c r e a s e >{i n c r }</ i n c r e a s e>

12 </ b i d d e r >;
13 / / upda te a u c t i o n
14 $LET i := a u c t i o n S i t e / / o p e n a u c t i o n [@id={ a i d }]
15 UPDATE i INSERT {b i d } ,
16 REPLACE i / c u r r e n t WITH { n c u r r e n t}$;
17 re turn n c u r r e n t ;
18 }

Listing 2: XOBEDBPL method bid

The XOBEDBPL method in listing 2 registers a new bid for an auction. The bidder and
the auction are selected by their ids. Additionally the increase is passed as parameter
as well. In line 4 and 5 the new current bid is calculated, in a second step in line 7-12
the new bidder is created as an XML object. Finally in line 14-17 the update operation
upon the auction site is executed. The update operation itself consists of an insert and a
replace. The first one is needed to insert the new bidder and the second to replace the
old with the new current. Please notice, that this method is declared as synchronized.
synchronized is used in connection with Java threads and guarantees that methods are
not executed in parallel.

4.2 Validity of Updates

To explain how XOBEDBPL statically checks the validity of updates we need to explain its
type system first.

Type System. XOBEDBPL’s type system is an extension of the XOBE type system which
is described in detail in [Ke03] on top of the standard JAVA type system. Checking type
correctness of a XOBEDBPL program consists of three parts.

Formalization translates the declared schema description into a more formal representa-
tion.

Type inference is used to determine XML types and differs for XML constructors, XPath

251

expressions and xFLWOR expressions in a XOBEDBPL program.

Subtype algorithm checks, if the inferred XML types are valid. The description of the
subtype algorithm is not part of this paper. Details can be found in [Ke03] and
[KL03].

In XOBEDBPL we formalize and represent types as regular hedge expressions representing
regular hedge languages [BKMW01]. Consequently a schema is formalized and repre-
sented internally by a regular hedge grammar.

Limitations of formalization. Any resulting regular hedge grammar in XOBEDBPL is lim-
ited to cover structural constraints on XML types. In particular this means that the value-
based constraints implied by ID/IDREFs in DTDs as well as ID/IDREFs and key/keyrefs
in XML Schemas are not preserved by the formalization process. Since XOBEDBPL in-
tents to check static validity, this is not a limitation. In general such value-based constraints
cannot be checked at compile time at all.

Regular hedge expressions and regular hedge grammars are used in XOBEDBPL as in
XOBE [KL03, Ke03]. For readability, the corresponding definitions are repeated here.

Definition 4.3 (regular hedge grammar) A regular hedge grammar is defined by G =
(T, N, s, P) with a set T = B ∪ E of terminal symbols, consisting of simple type names
B and a set E of element names (Tags), a set N of nonterminal symbols (names of groups
and complex types), a start expression s and a set P of rules or productions of the form
n → r with n ∈ N and r is a regular hedge expression over T ∪ N .1 �

We define the regular hedge expression, referred in short as regular expression, similar to
the notation used in [W304].

Definition 4.4 (regular hedge expression) Given a set of terminal symbols T = B ∪ E

and a set N of nonterminal symbols, the set Reg of regular hedge expressions is defined
recursively as follows:

∅ ∈ Reg the empty set,

ε ∈ Reg the empty hedge,

b ∈ Reg the simple types,

n ∈ Reg the complex types,

e[r] ∈ Reg the elements,

r|s ∈ Reg the regular union operation,

r, s ∈ Reg the concatenation operation, and

r∗ ∈ Reg Kleene star operation.

for all b ∈ B, n ∈ N , e ∈ E, r, s ∈ Reg.

�

Attributes are treated as element types with simple content having a name prepended by
’@’. Disorder constraints of attributes can be simulated by generating a choice type of
all possible sequences. However, our prototype is implemented more efficiently, which is
beyond the scope of this paper.

The formalisation step applied to the auction schema in appendix A yields the following
regular hedge grammar:

1We restrict r to be recursive in tail position only. This ensures regularity.

252

Example 4.1
As explained above only structural constraints of schemas are formalized. Element names
and simple types are boldfaced, nonterminal symbols are italic. An @ marks an at-
tribute. The start expression s is auction xsd.

auction xsd → document[site]
site → site[regions,categories,catgraph,people,open auctions,closed auctions]

people → people[(person)∗]
open auctions → open auctions[(open auction)∗]
open auction → open auction[@id[string],initial,bidder,current,itemref,

seller,quantity]
initial → initial[string]
bidder → bidder[date,time,personref,increase]

date → date[string]
time → time[string]

personref → personref[@person[string]]
increase → increase[string]

... → ...

The regular expression type of the start expression s is implicitly defined by the schema.
The auction xsd type represents the condition that each element which is defined as a direct
child of the schema root element, can be used as a valid root element within a correspond-
ing schema instance(document). The auction schema defines a single document root ele-
ment site, therefore auction xsd is derived to document[site]. If more root elements are
defined, the content type becomes a choice, i.e. document[root type 1|...|root type n].

In a next step XML types in a XOBEDBPL program are inferred.

In XOBEDBPL all variables have to be declared, therefore type inference of variables is
simple. In listing 2 variable bid is declared of type bidder, variables p id and incr
of type string and the result types of methods getDate() as well as getTime() are
string. Based on variable and result types, types of whole XML constructors on the right
hand side of an assignment can be inferred quite intuitively. In the example above:
bidder[date[string],time[string],personref[@person[string]],increase[string]].

After inferring the types of the left and right hand sides, the XOBEDBPL type system
checks if the type of the right hand side is a subtype of the type of the left hand side. In
this example XOBEDBPL has to check if
bidder[date[string],time[string],personref[@person[string]],increase[string]]
is a subtype of bidder according to the auction schema in listing A in the appendix.

4.2.1 Type inference for Updates

As introduced by an example in the last section type inference for XML object constructors
in XOBEDBPL can be understood quite intuitively. Type inference for XPath expressions in
XOBEDBPL starts with the context variable and proceeds by inferring recursively the types
of selected nodes by each step. The result type is inferred after the last XPath expression
step is handled.

253

Example 4.2
The type of the XPath expression in listing 2 line 4:

auctionSite//open auction[@id={a id}]

is inferred as follows. The context variable is declared of type site. This XPath expression
consists of one step selecting all descendant elements with tagnameopen auction. The
result type is inferred as [open auction]∗, which is of course not the best type. Since
XOBEDBPL’s type system lacks of value based constraints, the predicate cannot be taken
into account.

Details of XPath type inference rules can be found in [Ke03]. Type inference rules for
xFLWOR expressions containing a RETURN clause are a mixture of XPath type inference
rules to infer FOR and LET clause variables and XML constructor type inference rules
used to infer the resulting type of the Return clause. In this section we will concentrate
on type inference of xFLWOR expressions containing an UPDATE clause. An xFLWOR
expression with an UPDATE clause consists of one to many LET and FOR clauses defining
local variables, corresponding types can be inferred with known rules. Consequently a
new set of rules is merely needed for the UPDATE clause itself. Finally the type of the
updated variable is defined to be the result type of the whole expression.

In the following we will concentrate on inferring types of UPDATE clauses UPDATE i...,
with the type of variable i already given.

Let’s look at the following update clause example
UPDATE i DELETE i/person, with variable i declared of type people. Here child
elements named person are targets of a delete operation. XOBEDBPL infers the up-
dated type as people[ε |person∗], either all person elements are deleted(ε) or none is
deleted(person∗). Obviously all person elements will be deleted, but in general the in-
fluence of predicates must be taken into account. The type above can be simplified to
people[person∗], which is valid since it is the people type as defined in the schema.

Influence of predicates. Each LocationPath can be rewritten so that a single predicate is
part of the last or respectively of the first step. Constraints of this predicate can refer to any
node of any step of the whole path. Among these constraints are value-based constraints,
which in general cannot be checked by any static type inference system. Therefore our
type inference rules for update operations implicitly assume predicate constraints for each
step. As type inference works only structure based, the selection of predicates applies to
structure as well. Consequently predicate constraints can either evaluate to true or to
false for nodes with the same type, which is reflected by the choice types in our type
inference rules.

Each basic update operation (delete, insert, rename and replace) has got its own set of
auxiliary type inference rules. Due to their analogous construction we concentrate on in-
troducing the sets for delete operations. As mentioned above XPath expressions selecting
target nodes of an update operation are only allowed to contain descendant as well
as child axis. This can easily be checked before applying any of the following type
inference rules.

254

Definition 4.5 (function delete)

The function delete : Reg × Path → Reg provides the type r ∈ Reg in case
the nodes selected by path p ∈ Path are deleted and is recursively defined as:

delete(∅,p) = ∅
delete(ε,p) = ∅
delete(b,p) = ∅
delete(n,p) = delete(r,p) with n → r ∈ P
delete(r|s,p) = delete(r,p) | delete(s,p)
delete((r,s),p) = delete(r,p) , delete(s,p)
delete(r∗,p) = (delete(r,p))∗
delete(e[r],//test) = e[r’] ,r’ = deleteDescendants(r,test)
delete(e[r],/test) = e[r’] ,r’ = deleteChildren(r,test)
delete(e[r],//test/p) = e[r’] ,r’ = applyDescendants(r,test,p)
delete(e[r],/test/p) = e[r’] ,r’ = applyChildren(r,test,p)

with b ∈ B, n ∈ N, e ∈ E, r,s ∈ Reg and p ∈ Path. //test indicates a descendant step with a test
∈ E ∪ {∗} , respectively /test indicates a child step. In this context ∗ stands for a wildcard. /p
represents any non empty path.

The auxiliary functions deleteDescendants, deleteChildren, applyDescendants and apply-
Children are defined in the following. �

Definition 4.6 (function applyDescendants)

The functionapplyDescendants : Reg × E × Path → Reg navigates through
the input type r ∈ Reg and calls the function delete with the unchanged parameter path ∈
Path for descendants conforming to the nodetest ∈ E ∪ {∗}. The function is recursively
defined as:

applyDescendants(∅,test,p) = ∅
applyDescendants(ε,test,p) = ε
applyDescendants(b,test,p) = b
applyDescendants(n,test,p) = applyDescendants(r,test,p) with n → r ∈ P

applyDescendants(e[r],test,p) =
j

e[r′] | delete(e[r′], p) ,if e = test ∨ test =′ ∗′
e[r′] ,else

applyDescendants((r,s),test,p) = applyDescendants(r,test,p)
, applyDescendants(s,test,p)

applyDescendants(r|s,test,p) = applyDescendants(r,test,p)
| applyDescendants(s,test,p)

applyDescendants(r∗,test,p) = (applyDescendants(r,test,p))∗
with r’ = applyDescendants(r,test,p) and b ∈ B, n ∈ N, e ∈ E, r,s ∈ Reg, p ∈ Path and test ∈ E
∪ {∗} . �

Definition 4.7 (function applyChildren)

The function applyChildren : Reg × E × Path → Reg navigates through
the input type r ∈ Reg and calls the function delete with the unchanged parameter path ∈
Path for children conforming to the test ∈ E ∪ {∗}. It is defined analogously to applyDe-
scendants except:

applyChildren(e[r],test,p) =
j

e[r] | delete(e[r], p) ,if e = test ∨ test =′ ∗′
e[r] ,else

255

with b ∈ B, n ∈ N, e ∈ E, r,s ∈ Reg,p ∈ Path and test ∈ E ∪ {∗} . �

Definition 4.8 (function deleteDescendants)

The function deleteDescendants : Reg × E → Reg provides the type r ∈
Reg in case the descendants conforming to the test ∈ E ∪ {∗} are deleted. The function is
recursively defined as:

deleteDescendants(∅,test) = ∅
deleteDescendants(ε,test) = ε
deleteDescendants(b,test) = b
deleteDescendants(n,test) = deleteDescendants(r,test) with n → r ∈ P

deleteDescendants(e[r],test) =
j

e[r′] | ε ,if e = test ∨ test =′ ∗′
e[r′] ,else

deleteDescendants((r,s),test) = deleteDescendants(r,test)
, deleteDescendants(s,test)

deleteDescendants(r|s,test) = deleteDescendants(r,test)
| deleteDescendants(s,test)

deleteDescendants(r∗,test) = (deleteDescendants(r,test))∗
with r’ = deleteDescendants(r,test) and e ∈ E, r ∈ Reg and test ∈ E ∪ {∗} . �

Definition 4.9 (function deleteChildren)

The function deleteChildren : Reg × E → Reg provides the type r ∈ Reg
in case the children conforming to the test ∈ E ∪ {∗} are deleted. It is defined analogously
to deleteDescendants except:

deleteChildren(e[r],test) =
j

e[r] | ε ,if e = test ∨ test =′ ∗′
e[r] ,else

with e ∈ E, r ∈ Reg and test ∈ E ∪ {∗} . �

Now the following concluding type inference rule can be formulated. In case of other
update suboperations, i.e. replace, rename and insert, insert after
or insert before rules are defined analogously.

Definition 4.10
With the help of the type inference functions defined in 4.5 - 4.9, the following concluding
rule can be formulated:

i : r ∈ Reg
DELETE i/path : delete(r,path) ∈ Reg

(DELETE) �

In case a delete operation on variable i is detected at compile time, the DELETE rule is
applied to infer the resulting type of i. If the resulting type is still valid according to
the schema, the delete operation is accepted. The following example demonstrates the
influence of predicates in case of update operations.

Example 4.3
Let’s infer the type of the following update operation:
UPDATE i DELETE i//person[@id=’p01’] and assume that variable i’s type is for-
mer inferred as people, due to readability let person be of type person[name,emailaddress].

256

delete(people,’//person’) = people[r]
r = deleteDescendants(person∗,’person’)

= (deleteDescendants(person,’person’))∗
= (person[s]| ε)∗

s = deleteDescendants((name,emailaddress),’person’)
= deleteDescendants(name,’person’),

deleteDescendants(emailaddress,’person’)
= name[u],emailaddress[t]

u = deleteDescendants(string,’person’)
= string

t = deleteDescendants(string,’person’)
= string

→ people[(person[name[string],emailaddress[string]]| ε)∗]→people[person∗]

The inferred type is used as input for the type checking analysis as described before. In
this case the delete operation yields a valid type, because deleting person element(s) of the
optional node sequence inside a people element is allowed. The inferred type can further
be simplified to the original type people. The update operation of the example deletes one
single person element by its id. Although static type inference systems in general cannot
check value-based constraints, such constraints can implicitely be taken into account(the
choice type in line 4).

5 Implementation

The architecture of the XOBEDBPL preprocessor and a transformed XOBEDBPL program
at runtime is shown in figure 1. At runtime XOBEDBPL’s xFLWOR engine accesses the
XML database to perform updates and queries.

In our implementation we use the JAVA compiler compiler JavaCC [We02] to generate the
XOBEDBPL parser. Additionally we use the XML parser Xerces [Ap01] to recognize the
declared schemas. The internal representation of processed XOBEDBPL programs is done
via the JAVA tree builder JTB [TWP00].

XML objects are internally represented and stored using the Document Object Model
(DOM) [W398]. Please note that even though DOM is untyped, the transformed XML
objects of a XOBEDBPL program are valid, because type checking is done by the prepro-
cessor before.

The XOBEDBPL prototype includes an implemented xFLWOR(see section 4.1) analyzer
and engine. The xFLWOR analyzer is part of the XOBEDBPL preprocessor and checks
extended FLWOR expressions, an update capable extension of XQuery’s FLWOR expres-
sion [W304], at compile time. The xFLWOR engine is part of any transformed XOBEDBPL

program’s runtime environment and executes valid xFLWOR expressions.

At the moment XOBEDBPL uses as database backend the native XML database Infonyte
[In03], but this could easily be replaced by any other native or object oriented database
system.

257

xFLWOR analyzer

XML

database

Program Parser Schema Parser

Java with DOM

XML Schema or DTDXOBE DBPL program

precompiler
XOBE DBPL

transformed XOBE DBPL program

xFLWOR engine

transformed XOBE DBPL program

Updates

Queries

Type checking

Transformation

Figure 1: On the left the architecture of the XOBEDBPL preprocessor. On the right a transformed
XOBEDBPL program at runtime.

6 Experimental Results

We have tested our XOBEDBPL prototype on four XML documents generated by xmlgen
of the XMark [SWK+02] Benchmark project. We used rather small scaling factors for
xmlgen resulting in XML documents with sizes reaching from kilobytes to 3 megabytes.
Moreover we defined four representative updates and measured times to validate and ex-
ecute them. Validation and execution times of the XOBEDBPL prototype implementation
were compared with three other approaches all referenced in section 2 on related work.
Validation of updates in context of the approaches using DOM and Infonyte[In03] as well
as Xindice[Ap04] is tested at runtime by parsing the whole DOM against the schema.
Contrary XOBEDBPL and Xact are based on static validation, which is independent of the
XML document’s size. The four updates we have chosen are defined as follows.

Update 1. deletes an existing person of the auction site by its id.

Update 2. deletes all closed auctions elements of the auction site.

Update 3. inserts a new person into the people element of the auction site.

Update 4. is an update operation consisting of a delete operation as defined in the first
update and an insert as defined in update 3.

The four tables 2,3,4,5 present the results. The four rows represent the four different sized
XML documents generated by the XMark generator. Each record consists of two num-
bers representing static validation time as well as the execution time of the valid update
measured in seconds respectively. Latter times do not include former times. A ’-’ for
static validation time indicates that static validiation is not supported. The leftmost col-
umn contains the scaling factors of the XMark project. A scaling factor of 1.0 produces

258

an XML auction schema instance in the size of 100 MB, a scaling factor of 0.1 conse-
quently leads to a 10 MB sized document and so forth. In particular the scaling factor 0.0
generates a minimum XML document according to the auction schema. As we limit
the size of the largest XML document to 3 Megabyte we could achieve that all operations
take place in main memory. This was required because Xact does not contain a database
connection, but is the only other available prototype supporting static validation and XML
manipulation. Consequently measured times are not influenced by times accessing hard
disk. Moreover times to load and/or store the documents are not included.

The experimental results show that XOBEDBPL is very well suited to replace existing ap-
proaches based on DOM and rather low-level APIs. Especially times needed to statically
validate the four updates are very small and much better than Xact’s. Even for the chosen,
rather small XML documents, approaches like Infonyte+DOM and Xindice suffer
from the time to check the validity of updates at runtime. And contrary to static validation
times, these times will grow as the size of the documents grow.

We run our tests using Sun’s Java 1.4.1 virtual machine on a 2.0 GHz Pentium 4 with 768
MB RAM. Each test was run repeatedly to get average times.

XMark XOBEDBPL Xact DOM+Infonyte Xindice
scaling factor
0.0 0.17/0.23 13.5/13.64 -/0.36 -/0.37
0.01 0.17/0.52 13.5/13.64 -/0.69 -/2.09
0.02 0.17/0.83 13.5/13.64 -/0.87 -/2.67
0.03 0.17/1.06 13.5/13.67 -/1.07 -/3.96

Figure 2: Update 1. Deletion of an existing person by its id2.

XMark XOBEDBPL Xact DOM+Infonyte Xindice
scaling factor
0.0 0.17/0.19 11.7/11.87 -/0.36 -/0.45
0.01 0.17/0.19 11.7/12.17 -/0.99 -/1.49
0.02 0.17/0.19 11.7/12.47 -/1.48 -/2.57
0.03 0.17/0.19 11.7/12.7 -/3.96 -/4.76

Figure 3: Update 2. Deletion of all closed auction elements2.

7 Concluding Remarks

This paper presented updates in XOBEDBPL a novel XML, JAVA and XOBE based database
programming language. XOBEDBPL combines JAVA with XML by introducing XML ob-

2Times of validation at compile time and execution of valid updates are given in seconds. The scaling factor
0.0 produces a minimal auction XML document.

259

XMark XOBEDBPL Xact DOM+Infonyte Xindice
scaling factor
0.0 0.17/0.19 13.34/13.54 -/0.35 -/0.47
0.01 0.17/0.23 13.34/14.24 -/0.95 -/1.32
0.02 0.17/0.24 13.34/14.94 -/1.31 -/2.37
0.03 0.17/0.25 13.34/15.14 -/1.66 -/3.96

Figure 4: Update 3. Insert of a new person into the people element2.

XMark XOBEDBPL Xact DOM+Infonyte Xindice
scaling factor
0.0 0.17/0.4 22.14/22.35 -/0.52 -/0.61
0.01 0.17/0.73 22.14/22.37 -/1.47 -/3.18
0.02 0.17/1.1 22.14/44.64 -/2.74 -/5.24
0.03 0.17/1.3 22.14/47.24 -/3.62 -/7.52

Figure 5: Update 4. Update operations 1 and 3 are combined2.

jects which represent XML fragments. To update and query (persistent) XML objects
XOBEDBPL integrates xFLWOR(extended FLWOR) expressions. The validity of update
operations in a XOBEDBPL program according to the declared schema is checked by the
XOBEDBPL’s type system at compile time. The new set of type inference rules for update
operations in XOBEDBPL was presented and demonstrated using the XMark[SWK+02]
project. The architecture of our running prototype including a connection to a native XML
database system was described. Moreover experimental results comparing XOBEDBPL

with some related approaches [KMS04, In03, Ap04] were presented.

In the future we plan to further develop XOBEDBPL to a full database programming lan-
guage, including optimization techniques and inherent database connectivity as well as
type independent persistency and transactions for multi user access. In particular, XML
indexing techniques will be looked at in order to speed up XPath expressions, which are
an integral part of any xFLWOR expression. Especially, we plan to integrate a new in-
dex concept for XML called KeyX[HKL04] into XOBEDBPL. In this context, it will be
important to evaluate other native XML database systems and object relational systems
in exchange to Infonyte DB[In03] in order to find out which system is best suited for the
needs of an XML database programming language.

Acknowledgments The authors would like to thank Martin Kempa for his pioneering work
on XOBE and for critical comments on this paper.

References

[Ap01] Apache XML Project, T. Xerces Java Parser. http://xml.apache.org/
xerces-j/index.html. 15. November 2001. Version 1.4.4.

260

[Ap03] Apache XML Beans Project, T. Apache XML Beans. http://xml.apache.org/
xmlbeans/index.html. 19. June 2003. Version 2.0.

[Ap04] Apache Xindice Project, T. Xindice. http://xml.apache.org/xindice/
index.html. Januar 2004. Version 2.0.

[BA03] Bouchou, B. und Alves, M. H. F.: Updates and Incremental Validation of XML Doc-
uments. In: Proceedings of the 9th International Conference on Data Base Program-
ming Languages(DBPL). Potsdam, Germany. 6-8. September 2003.

[BKMW01] Brüggemann-Klein, A., Murata, M., und Wood, D.: Regular tree and regular hedge
languages over unranked alphabets: Version 1. Technical Report HKUST-TCSC-2001-
05. Hong Kong University of Science & Technology. April 3 2001. Theoretical
Computer Science Center.

[BMS02] Brabrand, C., Møller, A., und Schwartzbach, M. I.: The bigwig project. In: ACM
Transactions on Internet Technology. volume 2(2). S. 79–114. ACM. 2002.

[Bo01] Borland: XML Application Developer’s Guide, JBuilder. Borland Software Corpora-
tion. Scotts Valley, CA. 1997,2001. Version 5.

[Bo02] Bourret, R. XML Data Binding Resources. web document, http://
www.rpbourret.com/xml/XMLDataBinding.htm. 28. July 2002.

[CMS03] Christensen, A. S., Møller, A., und Schwartzbach, M. I.: Extending java for high-level
web service construction. In: ACM Transactions on Programming Languages and
Systems. volume 25(6). S. 814–875. ACM. 2003.

[CX00] Cheng, J. und Xu, J.: Xml and db2. In: Proceedings of the 16th IEEE International
Conference on Data Engineering (ICDE). S. 569–576. IEEE. 2000.

[Ec99] Ecma International. EcmaScript Language Specification.
http://www.ecma-international.org/. December 1999. Edition
3.0.

[Ec04] Ecma International. EcmaScript for XML Specification.
http://www.ecma-international.org/. June 2004. Edition 1.0.

[Ex01] ExoLab Group. Castor. ExoLab Group, http://castor.exolab.org/. 2001.

[FGK02] Florescu, D., Grünhagen, A., und Kossmann, D.: XL: An XML Programming Lan-
guage for Web Service Specification and Composition. In: Proceedings of Interna-
tional World Wide Web Conference (WWW 2002), May 7-11, Honolulu, Hawaii, USA.
S. 65–76. ACM. 2002. ISBN 1-880672-20-0.

[FHK+02] Fiebig, T., Helmer, S., Kanne, C.-C., Moerkotte, G., Neumann, J., Schiele, R., und
TillWestmann: Anatomy of a native XML base management system. In: The VLDB
Journal. volume 11. S. 292–314. 2002.

[GP03] Gapayev, V. und Pierce, B. C.: Regular object types. In: ECOOP 2003, Lecture Notes
in Computer Science 2743. S. 151–175. Springer-Verlag. 2003.

[HKL04] Hammerschmidt, B. C., Kempa, M., und Linnemann, V.: A selective key-oriented
XML Index for the Index Selection Problem in XDBMS. In: DEXA Conference August
30 - September 3, 2004, Lecture Notes in Computer Science. Springer-Verlag. 2004.

[HP03] Hosoya, H. und Pierce, B. C.: Xduce: A statically typed xml processing language. In:
ACM Transactions on Internet Technology. volume 3(2). S. 117–148. ACM. 2003.

261

[HRS+03] Harren, M., Raghavachari, M., Shmueli, O., Burke, M., Sarkar, V., und Bordawekar,
R.: XJ: Integration of XML Processing into Java. IBM Research Report RC23007
(W0311-138). November 18, 2003.

[IB] IBM Corporation. IBM DB2 XML Extender. URL:
http://www-3.ibm.com/software/data/db2/extenders/xmlext/.

[In03] Infonyte GmbH. Infonyte DB. URL: http://www.infonyte.com. 2003.

[JD] JDOM Project. JDOM FAQ. http://www.jdom.org/docs/faq.html.

[Ke03] Kempa, M.: Programmierung von XML-basierten Anwendungen unter Berücksichti-
gung der Sprachbeschreibung. PhD thesis. Institut für Informationssysteme, Univer-
sität zu Lübeck. 2003. Aka Verlag, Berlin, (in German).

[KL03] Kempa, M. und Linnemann, V.: Type Checking in XOBE. In: Weikum, G., Schöning,
H., und Rahm, E. (Hrsg.), Proceedings of Datenbanksysteme für Business, Technologie
und Web (BTW), 10. GI-Fachtagung,. volume P-26 of Lecture Notes in Informatics. S.
227–246. Gesellschaft für Informatik. 26.-28. Februar 2003.

[KLL03] Kim, S.-K., Lee, M., und Lee, K.-C.: Validation of XML Document Updates Based on
XML Schema in XML Databases. volume 2736 of Lecture Notes in Computer Science
(LNCS). S. 98–108. Heidelberg. 2003. Springer-Verlag.

[KMS04] Kirkegaard, C., Møller, A., und Schwartzbach, M. I.: Static analysis of XML transfor-
mations in Java. IEEE Transactions on Software Engineering. 30(3):181–192. March
2004.

[Le01] Lehti, P.: Desing and Implementation of a Data Manipulation Processor for an XML
Query Processor. Master’s thesis. Technical University of Darmstadt, Darmstadt.
August 2001.

[LLW03] Liu, M., Lu, L., und Wang, G.: A Declarative XML-R Update Language. volume
2831 of Lecture Notes in Computer Science (LNCS). S. 506–519. Heidelberg. 2003.
Springer-Verlag.

[MB03] Murthy, R. und Banerjee, S.: XML Schemas in Oracle XML DB. In: Proceedings of
the 29th VLDB Conference, Berlin, Germany. S. 1009–1018. 2003.

[Mi01] Microsoft Corporation. .NET Framework Developer’s Guide. web document,
http://msdn.microsoft.com/library/default.asp. 2001.

[MSB03] Meijer, E., Schulte, W., und Biermann, G. Pro-
gramming with Circles, Triangles and Rectangles.
http://www.cl.cam.ac.uk/∼gmb/Papers/vanilla-xml2003.html.
2003.

[Or01] Oracle Corporation: Oracle9i, Application Developer’s Guide – XML, Release 1
(9.0.1). Redwood City, CA 94065, USA. June 2001. Shelley Higgins, Part Num-
ber A88894-01.

[Or03] Oracle Corporation. Oracle XML DB. URL:
http://otn.oracle.com/tech/xml/xmldb/index.html. 2003.

[PLC99] Pelegrı́-Llopart, E. und Cable, L. JavaServer Pages Specification, Ver-
sion 1.1. Java Software, Sun Microsystems, http://java.sun.com/
products/jsp/download.html. 30. November 1999.

262

[PV03] Papakonstantinou, Y. und Vianu, V.: Incremental Validation of XML Documents.
volume 2572 of Lecture Notes in Computer Science (LNCS). S. 47–63. Heidelberg.
2003. Springer-Verlag.

[Sc01] Schöning, H.: Tamino - A DBMS designed for XML. In: Proceedings of the 17th
International Conference on Data Engineering. S. 149–154. Heidelberg, Germany.
April 2-6 2001. IEEE Computer Society.

[SHS04] Sur, G. M., Hammer, J., und Simeon, J.: UpdateX - An XQuery-Based Language for
Processing Updates in XML. In: International Workshop on Programming Language
Technologies for XML(PLAN-X 2004). S. 40–53. January 2004.

[SKC+03] Su, H., Kane, B., Chen, V., Diep, C., Guan, D. M., Look, J., und Rundensteiner, E.: A
Leightweight XML Constraint Check and Update Framework. volume 2784 of Lecture
Notes in Computer Science (LNCS). S. 39–50. Heidelberg. 2003. Springer-Verlag.

[Su01] Sun Microsystems, Inc. Java 2 Platform, Standard Edition, v 1.3.1, API Specifi-
cation. http://java.sun.com/j2se/1.3/docs/api/index.html. De-
cember 2001.

[SWK+02] Schmidt, A., Waas, F., Kersten, M., Florescu, D., Manolescu, I., Carey, M., und Busse,
R.: XMark: A Benchmark for XML Data Management. In: International Conference
on Very Large Data Bases(VLDB’02). S. 974–985. Hong Kong. August 2002.

[TIHW01] Tatarinov, I., Ives, Z. G., Halevy, A. Y., und Weld, D. S.: Updating XML. In: ACM
Sigmod Conference 2001. S. 413–424. ACM. 2001.

[TWP00] Tao, K., Wang, W., und Palsberg, D. J. Java Tree Builder JTB. http://
www.cs.purdue.edu/jtb/. 15. May 2000. Version 1.2.2.

[W398] W3Consortium. Document Object Model (DOM) Level 1 Specification, Ver-
sion 1.0. Recommendation, http://www.w3.org/TR/1998/REC-DOM-
Level-1-19981001/. 1. October 1998.

[W399] W3Consortium. XML Path Language (XPath), Version 1.0. Recommendation, http:
//www.w3.org/TR/xpath. 16. November 1999.

[W302] W3Consortium. Updates for XQuery. Working Draft, unpublished. October 2002.

[W304] W3Consortium. XQuery 1.0: An XML Query Language. Working Draft, http://
www.w3.org/TR/2002/WD-xquery-20041029/. 29. October 2004.

[We02] WebGain. Java Compiler Compiler (JavaCC) – The Java Parser Generator. http://
www.webgain.com/products/java cc/. 2002. Version 2.1.

[Wi99] Williamson, A. R.: Java Servlets by Example. Manning Publications Co. Greenwich.
1999.

[XM04] XML Database Initiative(XML:DB). XUpdate. http://
xmldb-org.sourceforge.net/xupdate. 2004.

[xml] About SAX. http://sax.sourceforge.net.

[YXGZ03] Yue, K., Xu, Z., Guo, Z., und Zhou, A.: Constraint Preserving XML Updating. volume
2642 of Lecture Notes in Computer Science (LNCS). S. 47–58. Heidelberg. 2003.
Springer-Verlag.

263

A Auction Schema

The auction schema elements and types of the XMark[SWK+02] project, which are
used in this paper.

<schema>
<e l e m e n t name=” s i t e ”>
<complexType>
<s equence>
<e l e m e n t name=” r e g i o n s ” t y p e =” r e g i o n s T y p e”/>
<e l e m e n t name=” c a t e g o r i e s ” t y p e =” c a t e g o r i e s T y p e ”/>
<e l e m e n t name=” c a t g r a p h ” t y p e =” c a t g r a p h T y p e”/>
<e l e m e n t name=” p e o p l e ” t y p e =” peop leT ype”/>
<e l e m e n t name=” o p e n a u c t i o n s ” t y p e =” o p e n a u c t i o n s T y p e ”/>
<e l e m e n t name=” c l o s e d a u c t i o n s ” t y p e =” c l o s e d a u c t i o n s T y p e ”/>

</ s equence>
</complexType>

</ e l emen t>
<!−−p e o p l e −>

<complexType name=” peop leT ype”>
<sequence>
<e l e m e n t name=” p e r s o n ” minOccurs =”0” maxOccurs =” unbounded”/>
<complexType>
<s equence>
<e l e m e n t name=”name” t y p e =” s t r i n g ”/>
<e l e m e n t name=” e m a i l a d d r e s s ” t y p e =” s t r i n g ”/>
<e l e m e n t name=” c r e d i t c a r d ” minOccurs =”0” t y p e =” s t r i n g ”/>
<e l e m e n t name=” wa tches ” t y p e =” watchesType ” minOccurs =”0”/>

</ s equence>
<a t t r i b u t e name=” i d ” us e =” r e q u i r e d ”/>

</complexType>
</ e l emen t>

</ s equence>
</complexType>
<!−−open a u c t i o n s −>

<complexType name=” o p e n a u c t i o n s T y p e”>
<s equence>
<e l e m e n t name=” o p e n a u c t i o n ” t y p e =” o p e n a u c t i o n T y p e ” minOccurs =”0”

maxOccurs =” unbounded”/>
</ s equence>

</complexType>
<complexType name=” o p e n a u c t i o n T y p e”>
<s equence>
<e l e m e n t name=” i n i t i a l ” t y p e =” s t r i n g ”/>
<e l e m e n t name=” b i d d e r ” t y p e =” b idde rT ype ” minOccurs =”0” maxOccurs =”

unbounded”/>
<e l e m e n t name=” c u r r e n t ” t y p e =” s t r i n g ”/>
<e l e m e n t name=” i t e m r e f ” t y p e =” i t e m r e f T y p e ”/>
<e l e m e n t name=” s e l l e r ” t y p e =” s e l l e r T y p e ”/>
<e l e m e n t name=” q u a n t i t y ” t y p e =” s t r i n g ”/>

</ s equence>
<a t t r i b u t e name=” i d ” us e =” r e q u i r e d ”/>

</complexType>
<!−−b i d d e r −>

<complexType name=” b idde rT ype ”>
<s equence>
<e l e m e n t name=” d a t e ” t y p e =” s t r i n g ”/>
<e l e m e n t name=” t ime ” t y p e =” s t r i n g ”/>
<e l e m e n t name=” p e r s o n r e f ”>
<complexType>
<a t t r i b u t e name=” p e r s o n ” us e =” r e q u i r e d ”/>

</complexType>
</ e l emen t>
<e l e m e n t name=” i n c r e a s e ” t y p e =” s t r i n g ”/>

</ xs : s equence>
</ xs : complexType>

</schema>

264

