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Abstract: Image segmentation can be seen as a pattern classification problem, where
each pixel is assigned, on the basis of, e.g., its gray level, either to the object or to
the background class. In this setup, vessel segmentation is characterized by large class
skew, as there are usually far more background pixels than vessel pixels and by weak
separability, as there is a strong overlap between the two classes. The proposed hys-
teresis classification makes use of specific problem-domain knowledge to overcome
such difficulties. We describe here a novel, supervised, hysteresis-based classification
algorithm that we apply to the segmentation of retina photographies. This procedure
is fast and achieves results that are superior to other vessel segmentation methods on
similar data sets.

1 Introduction

Photographies of the retina showing the vasculature are used, for example, to support
medical diagnosis and for intervention planning. To this end, the retinal vessels need to
be segmented to compute measures like vessel area and length, vessel width, abnormal
branching, and also to provide a localization of vascular structures.

There are several aspects that make vessel segmentation challenging. To name only a
few: the contrast of vessels varies with size, small vessels having a weak contrast, the
background is usually inhomogeneous and can be locally similar to the vessels .

The vessel-segmentation methods[KQ04] can be divided into supervised and unsuper-
vised, where the supervised methods need a set of labeled examples and work fully au-
tomatically. In many applications, a set of labeled examples is difficult to obtain, and
therefore, unsupervised methods are often used. However, there are some important appli-
cations in which supervised methods are well suited and automatic methods are needed,
like e.g., screening for diabetic rethinopathy [KS00].

Considering a pixel as a point in a feature space, image segmentation is similar to a bi-
nary (i.e., two-class) pattern classification problem. The hysteresis classification paradigm
[Con08], [Can86] makes explicit use of the prior knowledge about the connectivity of ves-



sels to provide a solution to this binary classification problem. It uses two classifiers: the
first one, called the pessimist, works with a practically zero false positives rate, which with
overlapping classes implies a high false negatives rate; the second one, called the optimist,
works with a practically zero false negatives rate and a high false positives rate. Then,
using the connectivity property of vessels, the pessimist results can be used to select true
vessels from among the optimist results.

The hysteresis paradigm can be used to construct both supervised [CA06] and unsuper-
vised [CA05], [NDYH+05] classifiers, for scalar and vectorial inputs, which are all accu-
rate and very fast. In this contribution, we describe a new type of supervised hysteresis
classifier that we use for the segmentation of retina images with application to screen-
ing for diabetic rethinopathy. We obtain results superior to previous supervised hystere-
sis methods described in [CA06] and some state-of-the-art methods [HKG00], [JM03],
[SAN+04], [SLJ+06].

2 Relative hysteresis classification

If the supports of two classes in a binary classification problem overlap strongly but not
completely in the original feature spaceA, then error-free classification is impossible there.
If the components of one class do exhibit some type of connectivity in a different feature
space B, where there is also no overlap, then the hysteresis paradigm is used to design
methods that may achieve error-free classification. Two classifiers working in feature
space A (i.e., the pessimist and the optimist), coupled over the connectivity constraint in
B, build a hysteresis classifier. The pessimist and the optimist are called base classifiers.
If the connectivity and disjointness in B can be described by some features, then these
should be included in A, where a standard classifier can then be used to achieve error-free
classification. For image segmentation, A is given by the gray levels of the analyzed im-
age. B is then the 2D space of image coordinates, where object points are neighbors to
one another according to a certain neighborhood.

In [CA06] we have described a supervised hysteresis classifier where the pessimist and the
optimist were two Fisher’s classifiers with parameters 〈~w, Tp〉 and 〈~w, To〉 respectively. ~w
defines a transformation from A to a 1D feature space and Tp,o represent thresholds in this
1D space. All pixels from all training images built a pixel-feature vector space, that was
then used to compute the parameters of the hysteresis classifier (i.e. 〈~w, Tp, To〉). These
parameters remain constant for all analyzed images. We call this an absolute hystere-
sis classifier. In the present paper, we propose a relative hysteresis classifier, where the
parameters change from image to image, thus better adapting to the analyzed data and
providing better results. The pessimist and the optimist are now defined relative to each
image. For scalar inputs this can be done by means of percentiles, for vectorial inputs we
introduce next the linear-classifier percentile.



2.1 The linear-classifier percentile

In [CA05] it was shown how to compute the base classifiers by hypothesis testing. They
are chosen such that the probability of a certain event is very small, i.e., at most equal to the
significance. This can also be expressed in terms of quantiles. Next, we assume that vessels
are darker than background. The image investigated can be either the original image or a
vessel map, which represents the result of different vessel enhancement methods applied
to the original image.

For the pessimist, the null hypothesis is that the pixel under investigation belongs to the
background class, hence we impose P (xb < tp) = α, with xb being a pixel gray level in
the background class, tp a threshold and α the significance. The variable xb is discrete,
and we can estimate

P (xb < tp) =
tp∑

i=vbmin

nbi

Nb
= α (1)

with vbmin denoting the minimum gray level on the histogram of the background gray
levels, nbi being the number of background pixels with gray level i, andNb being the total
number of background pixels in the image. The value tp is then the α’th quantile of the
histogram of the background gray levels.

The histogram of the vessel map is the discrete approximation of the mixture of vessel and
background class-conditional pdfs. Therefore, tp is also a quantile of the histogram of the
vessel map and can be found via

P (x < tp) =
tp∑

i=vmin

ni

N
= αvm (2)

where x is a pixel gray level in the image, vmin is the minimum gray level on the his-
togram of the vessel map, ni is the number of pixels with gray level i and N denotes the
total number of pixels in the image. The threshold tp is then the αvm’th quantile of the
histogram of the vessel map, and it should be chosen such that it selects practically only
vessel pixels.

Similarly, the optimist is computed using the object class-conditional pdf. This time we
hypothesize that the pixel under consideration is an object pixel. To compute the threshold,
we impose again a small significance level β,

P (xo > to) =
vomax∑
i=to

noi

No
= β, (3)

where xo is a pixel gray level in the object class, vomax is the maximum gray level on the
histogram of the object gray levels, noi is the number of object pixels with gray level i, and
No is the total number of object pixels in the image. to is the β’th quantile of the histogram
of the background gray levels and also is a quantile of the histogram of the vessel map. It
can be found from

P (x < to) =
to∑

i=vmin

ni

N
= βvm (4)



The threshold to is then the βvm’th quantile of the histogram of the vessel map, and it
should be chosen such that it selects practically all vessel pixels. For the purpose of hys-
teresis classification we use percentiles – i.e. 100’th quantiles.

The k’th percentile is defined as that value of a 1D random variable which is larger than
k percent of all other realizations in the available sample. As we are on the real axis, it is
self-evident where the two margins of the sample are, i.e. the maximal and the minimal
value. Therefore, the percentile spans the real axis between these two extreme values,
selecting in unit steps percentages of the number of realizations in the sample.

In the following, we extend the percentile to vectorial inputs. In particular, we describe
the 2D case, but a generalization to ND is trivial. In the 2D case, one should first establish
the margins of the sample. In the end we actually look for the axis of largest separability.
One should also define a way to select percentages of the total number of realizations in
the sample. For this second purpose, we need a type of separating surface. A “linear-
classifier” percentile is obtained when this separating surface is a line. Thus, a linear-
classifier percentile is defined by a linear separating surface and by its position on an axis
perpendicular to it, i.e., the axis of largest separability. A linear separating surface

hl(~x) = ~bT~x+ c = 0 (5)

is defined in 2D by the vector of weights ~b = [b1, b2]T and the position by c. By modify-
ing c, the separating surface is moved over certain distances on the axis defined by~b, such
that it selects percentages of the available sample in unit steps. We need to define also a
direction on this axis, i.e., an orientation of the separating surface. We define this from the
mean of the object class towards the mean of the background class, which is equivalent
in the 1D case to considering objects dark (see Figure 1 (a)). This equivalence is ensured
during feature extraction. Therefore, the first linear-classifier percentile separates one per-
cent of the data from the rest, and usually most of this data will belong to the object. Then,
the pessimist and the optimist are chosen from the set of decision surfaces given by the
linear-classifier percentiles from zero to 100 (see also Figure 1 (b)). ~b encodes both the
axis of largest separability and the orientation of the separating surface.

(a) (b)

Figure 1: Schematic representation of an object-map histogram with the pessimist and optimist
thresholds, tp and to respectively (a) and schematic representation of a 2D pixel feature-space with
the optimist and pessimist classifiers, O and P respectively (b).



2.2 Training of the relative classifier

We differentiate between training for scalar and for vectorial inputs. For vectorial in-
puts we need additionally to compute ~b, which is the same for both classifiers. The two
percentiles of the hysteresis classifier are then found using the Receiver Operating Char-
acteristic (ROC), as the ROC-analysis is well suited to deal with class skew [SLT06]. In
principle, the ROC training of a hysteresis classifier works the following way: we de-
fine a set of percentiles/linear-classifier percentiles, such that the corresponding separating
surfaces span the entire support of each training-set image, and then we choose two per-
centiles such that performance of the hysteresis classifier over the entire training set is
optimal, as measured by a performance measure.

For each image i in the training set,~bi is computed by

~bi = 2(K−1
2 ~m2 −K−1

1 ~m1) (6)

assuming the class-conditional pdfs are Gaussian, with Ki being the covariance matrix
and ~mj denoting the mean vector for class ωj , j = 1, 2, where ω2 is the background class.
In our experiments we set K1 = K2 = K, with K = arg min

Ki

|Ki|, i = 1, 2, where | · |
denotes the determinant of a matrix. The matrices are estimated parametrically from the
labeled training data. Then~b is computed as the mean orientation over all examples in the
training set

~b =
1
N

N∑
i=1

~bi (7)

To find the two percentiles and hence – in the vectorial case – to set the parameter c relative
to each analyzed image, different training methods can be imagined. Here we propose
the following iterative training procedure: the training data is investigated several times
to established together the pessimist and the optimist. The algorithm iterates alternately
for the pessimist and the optimist. The performance of the classifier during training is
judged by the distance to the baseline linking the ROC points corresponding to a false
positives rate (fp) of 0% and of 100%. First the ROC of a percentile is used to initialize
the optimist as that percentile corresponding to the point most distant from the baseline.
The ROC is constructed from the fp and correct classification (cc) rates of each percentile
from zero to 100. Then a hysteresis ROC is built using the previously established optimist
and all possible pessimist classifiers corresponding to the percentiles from zero to 100.
The pessimist corresponding to the point that is most distant from the baseline is selected.
The procedure is repeated this time for the optimist and so on for a predetermined number
of steps or until the base classifiers remain unchanged for two consecutive iterations. A
flow-chart of the training is shown in Figure 2.



Figure 2: Training of the hysteresis classifier.

3 Experimental setup and results

We have applied the hysteresis classifier to the segmentation of vessels in images of the
retina. For this purpose we have used a dataset that is publicly available: the Hoover
database [HKG00]. The Hoover database contains 20 images. We have divided these
images ourselves into a training and a test set. The test set contains the first ten images and
the training set the rest. The Hoover database contains two sets of hand-labeled ground-
truth images, again marked as first and second observer respectively. We have used the
first-observer set as ground truth in our experiments. The images were cropped to a size
of 512×512 pixels from 700×605 pixels.

3.1 Feature extraction

To generate feature vectors, so-called vessel maps, which are images of the same size
as the original vessel image, are computed from the original image through applying a
set of processing steps aimed at improving the separability of vessels and background
[CAGM05c]. Each vessel map makes use of other vessel properties to improve the sepa-
rability when all maps are used jointly during segmentation. Feature vectors were formed
by stacking the values of the vessel maps for each pixel position to a vector [CAGM05a].
Originally, five vessel maps were computed, and after feature selection [CA06] three of
them were retained to form three-dimensional feature vectors. The vessel maps that were
used to generate this vector were as follows: (1) the first eigenvalue of the Hessian matrix,
which is sensitive to elongated structures, (2) the result of the analysis of the eigenvalues
of the Hessian matrix in a multiscale approach, (3) the result of a linear filtering procedure,



AROC acc. sens. spec.
absolute 94.6 89.34 87.15 89.59
relative 95.5 89.48 89.77 89.45

Table 1: Results achieved on Hoover database.

(a) (b) (c)

Figure 3: Image of the Hoover database (a), the corresponding manually labeled ground truth (b)
and segmentation result achieved by the hysteresis classifier (c).

implemented via a multiresolution analysis based on the Laplacian pyramid [CAGM05b].
To ensure the correct orientation of the separating surface, each vessel map was re-scaled
– if needed – such that the vessels are darker than the background.

3.2 Results

We have compared the relative hysteresis classifier introduced here with the absolute hys-
teresis classifier from [CA06]. Their performance was measured by the area under the
ROC (AROC). The corresponding ROC is computed by fixing the pessimist and modi-
fying the optimist such that it assigns to the vessel class between 0% and 100% of the
available test samples. We have also computed accuracy (acc.), sensitivity (sens.) and
specificity (spec.). Table 1 contains the results for the two databases. All results are av-
erage values over all test images in the respective database. Some classification examples
are shown in Figure 3.

On a dual core Pentium E6700 processor under Matlab, the training time for a relative
classifier was about one hour on the Hoover data set. A new image is segmented every 6.8
seconds, including the computation of the feature vector. For comparison, segmentation
of one image of the same size by the primitive-based methods [SAN+04] takes more than
10 minutes.



4 Discussion and conclusions

Hysteresis segmentation can successfully segment objects of inhomogeneous gray-level
representation found on an inhomogeneous background, as long as there is a slight dif-
ference between object and background at a local level around the object’s borders. The
relative hysteresis classifier was found to be fast and accurate, being slightly better than
other hysteresis methods and a lot faster than some other state of the art methods for the
problem of retinal-vessel segmentation.

For applications where supervised methods are applicable, we have introduced a novel
relative hysteresis classifier. In contrast to previous absolute supervised hysteresis classi-
fiers, now, the set of parameters (like 〈~b, c〉 for vectorial inputs – see equation (5)) changes
from image to image. This way the algorithm adapts to the analyzed data. This adaptation
is the reason why relative hysteresis methods outperform absolute ones. This was made
possible by the usage of percentiles for the base classifiers. We have shown how to extend
the notion of percentile to vectorial inputs for hysteresis classification by means of the
linear-classifier percentile.

Even though we have used the hysteresis classifier to segment vessel images, we believe
that it represents a more general image-segmentation tool that can be used as well for other
applications afflicted by large class skew and overlap.
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