
Programming in Natural Language with fuSE:

Synthesizing Methods from Spoken Utterances

Using Deep Natural Language Understanding

Sebastian Weigelt1, Vanessa Steurer2, Tobias Hey1, Walter F. Tichy1

Abstract: With fuSE laypeople can create simple programsȷ one can teach intelligent systems new
functions using plain English. fuSE uses deep learning to synthesize source codeȷ it creates method
signatures (for newly learned functions) and generates API calls (to form the body). In an evaluation
on an unseen dataset fuSE synthesized 84.6% of the signatures and 66.9% of the API calls correctly3 .

Keywords: Programming in Natural Language; End-User Programming; Deep Learning; AI; NLP

Introduction: Intelligent systems became rather smart lately. One easily arranges appoint-

ments by talking to a virtual assistant or controls a smart home through a conversational

interface. For the time being, users can only access built-in functionality. However, they

will soon expect to add new functionality themselves. For humans, the most natural way to

communicate is by natural language. Thus, future intelligent systems must be programmable

in everyday language. We propose to apply deep natural language understanding to the task

of synthesizing methods from spoken utterances. fuSE combines deep learning techniques

with information retrieval and knowledge-based methods to grasp the user’s intent.

Approach: fuSE is a system for programming in (spoken) natural languageȷ laypersons can

create method definitions by using natural language only. To investigate how laypersons

teach new functionality we ran a preliminary study in which subjects were supposed to teach

new skills to a humanoid robot. The study consists of four scenarios in which a humanoid

robot should be taught a new skillȷ greeting someone, preparing coffee, serving drinks, and

setting a table for two. We used the online micro-tasking platform Prolific4 and were able to

gather 3168 descriptions from 870 participants. Based on the findings of the preliminary

study we develop the following three-tiered approach (see Figure 1). First, fuSE classifies

teaching efforts, i.e. it determines whether an utterance comprises an explicitly stated

teaching intent or not. Second, it classifies the semantic structure, i.e. fuSE analyzes (and

labels) the semantic parts of a teaching sequence. Teaching sequences are composed of a

declarative and a specifying part as well as superfluous information. Third, fuSE synthesizes

methods, i.e. it builds a model that represents the structure of methods from syntactic

1 Karlsruhe Institute of Technology, Karlsruhe, Germany, {weigelt|hey|tichy}@kit.edu
2 inovex GmbH, Karlsruhe, Germany, vsteurer@inovex.de
3 This contribution is a short version of the paper originally published in the proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics (2020) [We20].
4Prolificȷ https://www.prolific.co/

cba doi:10.18420/SE2021_46

Anne Koziolek, Ina Schaefer, Christoph Seidl (Hrsg.): Software Engineering 2021,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 117

https://creativecommons.org/licenses/by-sa/4.0/
mailto:{weigelt|hey|tichy}@kit.edu
mailto:vsteurer@inovex.de
https://www.prolific.co/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2021_46

Fig. 1ȷ Schematic overview of fuSE’s three-tiered approach.

information and classification results. Then, it maps the actions of the specifying part to API

calls, injects control structures to form the body and creates the method signature. The first

two stages are classification problems. For the first we compared classical machine learning

techniques, such as logistic regression and support vector machines, with neural network

approaches including the pre-trained language model BERT [De19]. For the second task we

narrow down to neural networks and BERT. However, for both tasks BERT-based models

performed bestȷ test set accuracy 97.7% (1st stage) resp. 97.3% (2nd stage). The third stage is

a combination of syntactic analysis, knowledge-based techniques and information retrieval.

We use semantic role labeling, coreference analysis, and a context model to build a semantic

model. Afterwards, we synthesize method signatures heuristically and map instructions

from the body to API calls using ontology search methods and datatype analysis. To cope

with spontaneous (spoken) language, our approach relies on shallow NLP techniques only.

Evaluation: To measure the performance of fuSE on unseen data, we set up a case study.

We created two new scenarios and used Prolific to collect 202 descriptions, of which we

randomly drew 100; 78 of these comprise a teaching intent. In sum, the descriptions require

the generation of 473 API calls. fuSE synthesized 73 method signatures; five were missed

due to an incorrect first-stage classification. Out of 73 signatures we assessed only seven to

be inappropriate. The generation of API calls (that form the method bodies) also performs

well (F1ȷ 66.9%). These results are promising; however, we plan to improve fuSE with a

dialog module to query the user in case of ambiguities.

Bibliography

[De19] Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristinaȷ BERTȷ Pre-training
of Deep Bidirectional Transformers for Language Understanding. Inȷ Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguisticsȷ Human Language Technologies, Volume 1 (Long and Short Papers). Association
for Computational Linguistics, Minneapolis, Minnesota, pp. 4171–4186, June 2019.

[We20] Weigelt, Sebastian; Steurer, Vanessa; Hey, Tobias; Tichy, Walter F.ȷ Programming in Natural
Language with fuSEȷ Synthesizing Methods from Spoken Utterances Using Deep Natural
Language Understanding. Inȷ Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics, Online, pp.
4280–4295, July 2020.

118 Sebastian Weigelt, Vanessa Steurer, Tobias Hey, Walter F. Tichy

