Defining requirements on domain-specific languages in
model-driven software engineering of safety-critical systems

Michael Wasilewski!, Wilhelm Hasselbring?, Dirk Nowotka?

Vossloh Locomotives GmbH, 24152 Kiel
http://www.vossloh-locomotives.com/
2Kiel University, Dept. Computer Science, Software Engineering Group, 24118 Kiel
http://se.uni-kiel.de/
3Kiel University, Dept. Computer Science, Dependable Systems Group, 24118 Kiel
http://zs.uni-kiel.de/

Abstract: Domain-specific languages are designed and used to assist software devel-
opment in various domains. Safety-critical systems such as aviation systems, railway
control systems and nuclear power plants require certified software by law. This pa-
per focuses on domain-specific languages that are used to represent a physical reality
and to describe the behavior of a control software as a finite state machine. Further-
more we focus on domain-specific languages that are able to generate source code for
sensor/actor systems from a specified finite state machine model. The source code
is intended to be compiled and operated in a fixed time slot of a real-time operating
system of a safety-critical controlling hardware.

We give an example of a model that is expressed using a functional tree, a method
that is based on input and state space partitioning. We show that models expressed by
a functional tree are equivalent to deterministic and complete finite state machines. To
formally prove the equivalence we analyze a model in terms of automata theory. We
will furthermore show that omitting the properties of determinism and completeness
violates normative requirements when a model is used to generate software for safety-
critical systems.

The major contribution of this paper is the definition of formal requirements on
domain-specific languages employing formalisms of automata theory. The require-
ments are easily verifiable criteria for domain-specific languages to assess the suit-
ability in an engineering process of a safety-critical system. We analyze two example
modeling languages for their suitability to create a source code for safety-critical ap-
plications.

1 Introduction

Model-driven software development uses a formal description of a model and code gener-
ators to obtain an executable software for specific purposes. The base for a formal descrip-
tion of a model can be either a domain-specific language (DSL) or a universal modeling
language such as the UML. The design goal for a DSL is to cover specific problems and
properties of its domain such as track topologies and signaling layouts for railroad in-
frastructures [GHH™ 12]. Increased attention has to be payed if DSLs are used to create

467



source-code to be used in safety-critical applications. Design properties of a DSL can lead
to a risks for legal assets like life, healthy and property.

Our goal is to define requirements for domain-specific languages from which source code
is generated for safety-critical applications. In Section 2 we present the scope of this paper.
We will illustrate the use of a Functional Tree (FT) and Finite State Machine (FSM) as two
possible ways to express a model of a signal processing system. In Section 3 we will give
a brief introduction into expressing a model using FT's with reference to [WH11].

We will compare the expression of a model as FT and show the weaknesses of the equiv-
alent expression as FSM. With an example model we show a simple method to obtain an
alphabet from physical states and inputs in order to transform a model expressed by FTs
into an automaton. We analyze in Section 4 which properties of a automaton are needed
to represent a model as a FSM with the same formal rigor as a representation with a FT
provides.

A formal definition of an automaton is introduced in Section 5 and an automaton type is
selected for our goal to define formal requirements for a DSL. The analysis in Section 4 is
the base for defining requirements on DSLs in Section 6. We will use the formalisms of
automata theory to define requirements on a domain-specific language as the contribution
of this paper. We will compare the defined requirements to legal requirements such as
normative regulations for the certification of software in safety-critical systems and show
potential violations.

Finally in Section 7 we analyze two languages based on our defined requirements. As
examples we use the DSL MENGES [GHH™T 12] as a representative of a highly special-
ized DSL. As representative for a general-purpose language we analyze state charts in the
UML. We show the weaknesses and which additional effort is needed for a suitable use of
these languages for modeling of safety-critical systems.

2 Scope

The scope of this paper is the development process for the software of a safety-critical
system as in Figure 1.

We assume that functional requirements for the software are defined and a DSL is used
for their formal expression. We furthermore assume that a selected DSL’s output model
can be expressed as a FSM or a FT. For both options a specific code generator can create a
source code that is passed to a target specific compiler. The finally generated software can
be operated in a safety-critical system. Our goal to define formal requirements on a DSL
for safety-critical systems is achieved with the following steps

1. We give an example and analyze (see 1 in Figure 1) the properties of a model that is
expressed using a FT

2. We transfer the analyzed properties to a model that is expressed as a FSM and show
that models without the analyzed properties violate legal requirements for software

468



Spec. Code

Functional FSM
. Generator
Requirements
I
I
I

Y

Model Target

y

Compiler

DSL

“fr Y
R4
NS

*. | Functional| | Spec. Code v

1 Tree Generator
Safety Critical
System

Figure 1: Scope of analysis

in safety-critical system

3. We define formal requirements on a DSL for model-driven software engineering
of safety-critical systems to create a model such that legal requirements are not
violated,(see 2 in Figure 1)

The reason for the choice of FTs is the method’s strength that formal uniqueness and
completeness of a designed model is implicitly given if it can be expressed by a FT. This
property is given by the mapping of physical values as intervals on defined input and state
space partitions of a model. Formal uniqueness and completeness of expressing functions
or models by FTs are proven with the set theory. The formalism of this method was first
time introduced in the context of a rail vehicle project in [WH11]. We will show that
a model expressed by a FT has an equivalent expression by a FSM, but only a limited
class of FSMs can be expressed by a FT (see Figure 1). We will furthermore show that
the classes of FSM’s that cannot be expressed by FTs violate normative requirements for
safety-critical software.

3 Background and formal basis

In a first step we design an example model of a function for the control of a diesel engine
as in Figure 2. We use a FT as expression method to explain the background of this
paper. We will present an equivalent expression of our designed model as FSM to show
the weaknesses of a FSM expression. Our goal is to find the differences of both expression
methods by an analysis of our model as an automaton. We will introduce the formal
definitions needed for the analysis of the designed model in terms of automaton type and
an alphabet. Finally we will analyze the properties of our model considering the following
aspects

e What kind of automaton is created if it is expressible by a FT ?

469



‘ Variable ‘ Value Meaning

S Shalt Engine halted
(discr.) | Ssiart Engine starting
Srun Engine running
Sistop Engine stopping
Sao Unknown state
AS TRUE Switch ON
(bool) FALSE Switch OFF
ST TRUE Start
(bool) FALSE No Start
Tirpm Rro: Engine halted
(cont.) | nppm <1
Ry : Engine turning
1> nppm < 400
Ryr: Engine running
Nypm > 400

Table 1: Variable partitions

e Which is the alphabet of the automaton ?
e Which language is accepted by the automaton ?

e Which are the differences of a model expression by a FSM and by a FT ?

The system in our example in Figure 2
Q consists of an Engine Control Panel and

3.1 Example model design and functional trees expression
the engine. The input values for our model
are the activation switch (AS) and the star-

o e
OFF Engine
n ter button (ST) on the Engine Control Pa-

Engine Control Panel rpm  nel and the engine speed (1, ). Our de-
sign starts with the decisions which input
and state values we use in our model and
how the input and state values are repre-
sented and divided into partitions. For an expression of the model by a FT the partitioning
is the basic step.

Figure 2: Example of an Engine Control

We will design our model such that the starter button (ST) and activation switch (AS) are
represented by boolean values with the partitioning into TRUE/FALSE. The engine speed
(nrpm) 1s represented by a continuous value with a partitioning into intervals. We will
furthermore define that our engine can be in the states Sj;¢ if the engine is halted, Sgzqrt
if the engine is commanded to start, S;.,,,, if the engine is running and Sy, if the engine

470



is commanded to stop. For any other state we define Sq, as the "unknown state’. The input
and state variables and their partitions for our model are shown in Table 1. To design the
model of our engine control function we have to define the conditions for the changes of
the state variable S from one of it’s partitions into another one. This step is equivalent to
the design of a FSM and the definitions of the transitions from one state to another. To
show the capability of using FTs as an expression for our model we use an example as in
Figure 3.

This FT shows an example of a model which starts by processing state variable S with
all of it’s partitions as in Table 1. The partitions are represented by the edges of the tree.
Depending on the partitions and the values of subsequent variables the edges are taken to
the subsequent nodes (circle) until a leaf (square) is reached. The leafs (squares) of the
tree contain the states into which our model changes after one computation step. So every
path in this FT is equivalent to a transition of a FSM.

S
halt

@ it

Sstan S S

S
run halt run

halt start

Cpatt Con start © ignite drop tun

Figure 3: Functional tree for Engine Control

We can see that the different paths in our FT depend on different input variables and
different processing orders. This is equivalent to different conditions for a transition of a
FSM. For example the transitions ts¢qnq and ¢, are valid for a stopping engine (Ss:op)
and only depend on the speed (12,,,,,) to determine if the engine is already stopped (1, €
R1,0) or still stopping(n,pm, € (Ro U Rur)). As second example the transitions ,q7
and t,,, are valid for a halted engine (Spq¢). It is started (¢,,) or remaining in standstill
(thait) depends on the inputs of the activation switch (AS) and the start button (ST). The
conditions for all transitions of this model can be found in Table 3 when we analyze our
model.

471



Figure 4: Finite State Machine for Engine Control

Our example shows that if a variable is considered in a FT to determine a result then it
is considered with all it’s partitions (completeness). If a variable is not considered in a
FT then the result is the same for all of it’s partitions (independence). The characteristic
property of a FT is that every value of a variable has to be and can only be element of
exactly one of the variable’s partitions. For the expression of a model with a FT it means
that every combination of input and state space corresponds to exactly one path in the FT.
The consequence is that only models can have an expression as a FT which correspond
to a deterministic and complete automaton. We will formally prove this property in this
paper.

As shown in Figure 1 we assumed that a model expressed as FT can be also expressed as
FSM. For our example, the FT in Figure 3 is equivalent to the FSM in Figure 4. Note that
the expression as FSM shows the transition t.,..o to represent an unknown error that can
corrupt the state variable of the model (e.g. bad memory access, hardware error etc.). This
transition is not shown in the FT. The reason is that both expression FT and FSM cannot
specify a defined condition for this transition. Important is that both expressions show the
same reaction of the model if the state variable is in the unknown state’ Sq

The expression as FSM shows the states and the transitions of the model as shown in Table
3. The conditions for every transition can be defined, but there is no automatic mechanism
to ensure that all combinations of input signal are be processed by the FSM in every state.
There is also no automatic mechanism that ensures that determinism for the transition is
specified. To ensure uniqueness and completeness of a FSM additional verification effort
is required in the design process while using a FT implies these properties. If a DSL is
involved in the model design for a safety-critical system we demand that the DSL’s output
is a formally complete and unique model.

472



With FTs a designer has to start the modeling process with a correct partitioning of input
and state variables for a model. Extensions, refinements and changes of the model design
are expressed as changes in the paths of the FT for the model. The properties of FTs as
expression method for a model ensure that for all combinations of input and state variables
the designed model is formally unique and complete. The method gives a designer the
choice in which context physical values are used to compute a result or not. This makes
the method easily scalable for higher numbers of physical values. Verification efforts and
finally development costs are only limited to verify the correctness of the designed model
to meet the functional requirements, as shown in in Figure 1.

The verification of correctness of a model expressed as FSM is often limited to only cover
the functional requirements. A verification of formal uniqueness and completeness of
all input and state value combinations is often not done. The reason is that no selection
mechanisms for relevant combinations of variables and states exists comparable to the
partitioning mechanism of a FT. A non-deterministic FSM can be in theory transformed
into a deterministic FSM by using it’s power set. Completeness and determinism can be
verified then, but this will increase verification effort and development costs significantly.

Our model is intended to be used safety-critical applications. Mistakes such as incom-
plete or contra-dictionary definitions during the model design can result in severe hazards
for human life or material assets. Normative regulations such as [CENOIb](see 8.4.2),
[IEC11](see 7.2.2 and 7.4.5) require a unique and complete functional specification of
software for safety-critical applications. We have demonstrated that expressing a model
with a FT is limited to models that correspond to a deterministic and complete automa-
ton, but this is exactly the type of model we need to meet the requirements of software in
safety-critical systems. Our goal will be therefore to define formal requirements for a DSL
such that the output model will have a defined behavior for every combination of inputs
and states and be expressible as a FT.

3.2 Functional tree expressed model as automaton

For the statement of formal requirements on DSLs we will analyze a designed model that
we expressed using a FT as an automaton. The automata theory uses sets of states and
symbols to describe alphabets and languages that are accepted by an automaton. The basic
elements of FTs are disjoint sets to describe the processed signals. We will connect both
concepts.

In a first step we will describe the relation between the disjoint sets of value partitions as
used for a FT and the sets of input symbols of an automaton, as in Table 2. We have listed
all input space partition combinations of our example model in Figure 4. Every input
space partition combination is assigned to one symbol s; to sj2. We obtain a bijective
function between our model’s input space partition combinations and the symbols of an
formal language. This approach can be extended to any number of input variables such
that we obtain a partitioning of the input space of a model and one corresponding language
symbol for every partition. Similarly the partitions of one or more state variables provide

473



a partitioning of the states space of a model. Every partition of the state space of the model
will correspond to one state of an automaton.

The analysis of a model that is expressed as a FT

is based on the input space I, the state space S of | AS [ ST [ npm || Symbol |
the model and a definition of functional indepen- OFF | T | Rus s1
dence. The input and the state spaces are defined OFF | T Ry S
based on the signals that are processed in the compu- OFF | T | Rro S3
tation (note that variables over continuous domains OFF | F | Ryr Sq
are discretized by considering intervals): OFF | F Ry S5
OFF F R LO S6
IC (RxR) xZ/ x B ON | T | Rur 57
p » , ON T RO S8
SC(RxR)" xZ/ xBF ON | T | RLo 59
where I and S are finite and 7,4’ j, j/, k, k' are natu- gg 112 ig)l :(1)

rals. By common notation, R denotes the set of reals, ON F & 5

LO 12

Z denotes the set of integers, and B denotes a binary
set. Our example in Table 1 uses just one state vari-
able, namely S. We use three signals in our example,
namely AS, ST and 71,y .

Table 2: Symbol table

For the specification of a function in our context we use a set of n variables xg to x,,
of continuous, discrete or binary type. A function of an automaton (e.g. transition, out-
put) will be defined as f(xq...2,). We define functional independence of a function
f(zo...xp ... x,) from the variable x if the following holds:

Va: flzo.. @k .. .xn) = f(xo...x...2y)

This definition of functional independence is required for a formally correct split of the
input and state space S x I into partitions. The connection of a FT as in Figure 3 and the
symbols, states and transitions of an automaton is shown in Table 3. Each row of the table
represents one path of the FT. We can also see that each row represents one of the partition
Py to Py2 of our model’s input variable (AS, St, n,,,) and state variable (S) space.

Considering the functional table 3 as state and transition table of an automaton we can
find the automaton states as partitions of the state variable S of the functions tree. For
comparison see Figure 4. The automaton transitions correspond to paths of the FT. Note
that the transition tj,,;; is mentioned two times in Table 3 and two times in the FT, see
Figure 3 while it is only mentioned once on the FSM expression of the model, see Figure
4. Referring to our example model the technical meaning is that the start of the engine can
be blocked by two conditions, namely the activation switch turned off (AS=OFF) or the
starter button not pushed (ST=F).

Not all transitions from one state to another depend on all input variables while all input
variables have to be considered for a complete and unique design of the model. The V
symbol in a row means that an input variable has not to be considered, as the final result is
the same for any of it’s values. In the FT expression of a model the corresponding variable

474



Partition H State S H Inp. AS | Inp. ST | Inp. nypy, H Transition | Symbol

P Shalt OFF v v thait 51,52,53
54,55,56

Py Shait ON F v thalt 57,588,589

Py Shait ON T v ton 510,511,512

P4 Sstart OFF v v tb'reak 51,52,53
54,55,56

P5 Sstart ON v RHI tignite 57,510

Ps Sstart ON v Rrojo Lstart 88,89,511,512

P; Sstop v v Ro a1 tstop 51,52,54,55
57,58,510,511

P8 Sstop v v RLO tstand 53,56,59,512

Py Srun OFF A \ toff S1,592,53
54,55,56

PlO Srun ON v RHI trun 57,510

Py Srun ON v Rrojo tarop 58,59,511,512

Pro So v v v tinit 57,58559
510,511,512

Table 3: Functional table

is not in the path that represents the transition. For example the transition ¢j;; of partition
P, is independent of the variable 7,.p,,. In the FT of the model Figure 3 the variable 1,
is not in the corresponding path. Considering the model as an automaton we need to select
the input symbols for transition ¢4;; such that we cover the corresponding input space
partitions as in Table 2. In our example the symbols s7,sg,59 have all in common the input
variables AS=ON and ST=F while all together cover all partition of 72,py,.

With the definition of functional independence we can use the symbols as in Table 2 for a
formally correct transformation of a model expression as FT into a model expression as an
automaton. Our assumption is proved that every model expressed as FT can be expressed
as a FSM. For the partitions P; to P, of the FT and the input and state space of our model
S x I holds:

n

U Pe=sx1

k=1

Furthermore for every partition of the state variable S we can find all input symbols of
the automaton as in the Symbol column in Table 3 exactly once. The formal definition
of functional independence says that not considering a variable in a computed result is
equivalent to a result that hold for all values of the variable. This proves that an automaton
that corresponds to model expressed as FT is deterministic and complete.

475



4 Properties of an automaton obtained via functional trees

Our analysis starts on the base of a transition system (TS) as defined in [BKO08], Chapter 2.
We focus on the states and transitions of an automaton so the mentioned TS is an appro-
priate base. We will consider the processing of a new input symbol as a transition from
one state to another state.

The analysis is based on the assumption that an automaton is transformed into source code
that is finally compiled and executed in a safety-critical system. The execution of the
source code is steadily repeated in fixed time slots and potentially never terminates. We
will analyze the properties of an automaton that is obtained by designing a model using a
FT. The goal is to express the found properties in terms of automata theory [Sak09].

A FT model creates an automaton processing a finite length input
This property results from the fact that the automaton created by a FT runs for a
potentially infinite time. However in every processing cycle a new symbol of the
input space is processed which corresponds one transition of the automaton. The
finally processed sequence of input symbols keeps a finite length in every processing
cycle.

The automaton is deterministic
The determinism of the automaton is given by the uniqueness property of the FT.
For each input symbol and state there is at most one transition. The automaton has
therefore at most one transition for each input element at each state.

The automaton is complete
The completeness of the automaton is given by the completeness property of the
FT. For every input symbol and state combination there is exactly one transition. A
preserved state is expressed by a reflexive transition. The automaton has therefore
exactly one transition for each input symbol. In safety-critical applications the com-
plete behavior of an automaton has to be specified, verified and tested. That includes
implicit reflexive transitions.

The automaton provides a specified result for every processed input sequence
The FT formal base ensures that an automaton provides a specified transition for ev-
ery partition of the input and state space. The output of the automaton is a specified,
verified and tested function for every computation cycle. This property is required
for operation in a safety-critical system.

Note that, a notion of automaton is not yet given here, but will follow in the next section.
The property to provide a specified result for every partition of the input and state space
of the automaton is the key point for the definition. Our automaton can, in principle, be
operated with any sequence of input symbols. However it is required that the automaton’s
behavior is always within the specified scope. For the further analysis we therefore assume
that our automaton processes any sequences of input symbols. This assumption is the base
for our selection of an automaton model.

476



5 Selection of automaton type

In Section 4 we have obtained the properties for an automaton is the output of a model de-
sign using a FT. The analysis showed that we require a complete, deterministic automaton
with output to describe the automaton investigated. A complete, deterministic automaton
A with output is defined as follows (see also [AS03]):

A:(E7X7Z720767f) (1)

where ¥ denotes the set of inputs, X denotes the set of possible outputs, Z denotes the set
of states, zp € Z denotes the start state, 6: X X Z — Z denotes the transition function
and f: Z — X denotes the output function of the automaton. As usual, we extend §
on the set of all finite sequences over ¥ as follows. Let ¢': ¥* x Z — Z be such that
0'(c'a,z) = 6(a,0'(c’,2)), where o/ € £* and @ € ¥ and z € Z. The output of the
automaton is taken by f from the state the automaton ends in after reading a sequence o,
formally, f(¢'(o, z0)). This type of automaton meets our key requirement to provide a
specified result for every combination of input symbol and automaton state. This rigorous
requirement result from normative regulations for software in safety-critical applications.
The behavior of software has to be completely specified and evaluated for potential safety
hazards. The use of the usual semantics of Mealy automata to ignore unspecified input
would provide the same result, but violate the requirement for a complete specification. It
is therefore not suitable for evaluation purposes of safety-critical software.

6 Requirements on DSLs for safety-critical systems

For the definition of the formal requirements on a source code generating DSL we refer
to an automation as in Equation 1 of Section 5. Based on our analysis of automaton
properties we define the following formal requirements for the use of DSLs and their
generated models in a safety-critical system. We refer to the output of a DSL as a model
as we have seen that a model can be expressed in different ways, namely FSM or FT.

A bijective function has to exist between the physical value and state space partitions
and a model’s input and state space partitions: A DSL has to provide a formal
mechanism for the transformation of physical input and state partitions (such as
intervals of sensor values, switch states, etc.) and a model’s input and state space
partitions. It has to be ensured that every partition of the input and state space of a
model has a physical correspondence — even if the correspondence is identified as
invalid.

The generated model has to be a non-terminating transducer: The generated model
has to process inputs of potentially infinite length. However every received new
input symbol since the start of the processing keeps the already processed word’s
length finite.

477



Partition Physical

Reality

Rro : T < —273°C | Valid Temperature
Ry : T > —273°C | Sensor fail

Table 4: Example of bijective function between partitions and physical reality

The generated model has to be a deterministic automaton: For application in a safety-
critical systems the behavior of software has to have a unique description for the
assessment of potential risks. For any symbol of ¥ there has to be exactly one
transition.

The generated model has to be complete automaton: For application in a safety-
critical system the behavior of software has to have a complete description for the
assessment of potential risks. For every symbol of 3 there has to be an element in
0 : 3 X Z — Z. The state machine is in continuous computation in a running sys-
tem. We also require the the model for all states and inputs to be provide a specified
result to be suitable for the use in safety-critical systems.

These requirements are based on the established formalism of automata as theoretical
foundation and can be easily verified in practical use. Our defined requirements can be
well justified by normative regulations that are demanded by law for software in safety-
critical systems [CENO1b, IEC11]. The bijective function between physical input and state
space partitions and automaton symbols and states is a formal criterion for the transforma-
tion of a physical reality into a model.

An example for such a transformation is the representation of a temperature in °C as signed
integer as in Table 4. A value 7" > —273°C represents a valid temperature measured by
a sensor as physical reality while a value 7" < —273°C is the physical reality of a sensor
fail. We want to evaluate for every partition of our model whether the input and state
values have a physical sense. We want furthermore specify a reaction of the software for
every partition we identify as physically invalid, inconsistent or erroneous.

If a DSL’s output is an automaton that ignores an input (such as a Mealy automaton can do)
it violates the legal requirement for a complete specification. If the DSL’s output is a non-
deterministic automaton it violates the legal requirement for a unique specification that
can be evaluated for safety hazards. The safety of software should not rely on potentially
incorrect expectations about a physical reality and erroneous model design. Our approach
automatically covers effects of component failures (such as invalid sensor data, unexpected
data memory changes, etc.) that have to be evaluated during the system development
process [CENO1la]. The computation of a model itself has to be specified, verified and
tested with the required rigor for safety-critical systems.

The requirement for a non-terminating transducer results from the potentially infinite run-
time of an embedded system. However, in practice the time between a system start and
any processing cycle will be finite. This justifies to considers a signal processing system

478



Listing 1: MENGES example

process SwitchChange{ start check_lock;
condition check_lock{
case this.locked: release_lock ()
default: start_SwitchMotion () }
action start_SwitchMotion () {

continue SwitchCheckPosition}}

as an automaton processing words of a finite length avoiding problems with processing
infinite formal objects.

7 Property analysis of existing modeling languages

We analyze two representatives of modeling languages based on our formal requirements
for DSLs being used in safety-critical applications. One modeling language (MENGES
project) is designed highly specific for the domain of rail signaling. Another example is
UML which serves as a general-purpose language to describe models.

7.1 DSL of the MENGES project

The DSL of the MENGES project [GHH12] was designed to describe rail signaling
infrastructures. This DSL is able to describe the topology of a specific installation based on
object instances of “interlocking elements” such as switches. The communication between
interlocking elements is based on a role model and defined interaction protocols. The logic
of interlocking elements is specified using finite state machines or processes. The elements
to describe a logic are actions and conditions.

For our analysis we take a closer look at a process at the example in Listing 1. This
example describes the process to change the position of a switch. It starts with a check if
the switch is locked. A locked switch triggers an action to release the switch otherwise the
motion of the switch is started. The motion is not mentioned in detail here. The process
terminates and a following process to check the switch position is started.

The presentation paper of the DSL of the MENGES project [GHH T 12] mentioned that
a process can block during evaluating a condition. To realize a non-blocking process the
definition a default-action is required. We have considered a process as a FSM. The
evaluation of conditions is equivalent to the processing of different input symbols. Our
analysis showed that the possibility of a process to block is equivalent to the processing
of an unspecified input. The requirement for a total finite state machine was violated. Our
analysis resulted in a change of the DSL design such that a default-action is mandatory.

479



Based on our formal requirements for DSLs in safety-critical systems, we have identified
the model design as the critical point if the DSL of the MENGES project is used in a
software development process as in Figure 1. The challenge is a suitable choice of states
and input to represent rail infrastructure elements. The requirement for a bijective function
between the real rail infrastructure elements and their representation in a software is a
possible point for future work. Requirements for determinism, a total transitions function
and specified processing of all input and state space partitions can be fulfilled, but the
verification of these properties is not withing the scope of the language. Also this is a
challenge for future work.

7.2 State charts in the UML

The Unified Modeling Language [Oes12] is able to specify hierarchical state machines as
State charts. State charts contain states and transitions and represent an object life cycle.
Actions can be defined for state entry, exit and persistence in a state. Transitions are only
labels and can be described as external, implicit transitions or as so called “guards” to
detect a defined conditions.

UML was designed to be processed by other tools such as code-generators to transform the
models into other structures. This language was not explicitly designed to assist software
development for safety-critical applications, but is however used for this purpose. Addi-
tional effort such as definitions of subsets of the language and verification techniques are
needed to achieve a suitable usability of UML to assist the development of safety-critical
software. Our formal requirements can be criteria for a rigorous check of language subsets
or designed models. Future work can show how the formal requirements are realized with
UML.

8 Related Work

We have defined our requirements on a domain-specific language for safety-critical sys-
tems without using a formal language. The problems of obtaining complete models for
control systems and the limits of language parsing finite state automata are discussed in
[WWWO04]. This work identifies the problems without formalization, but in the context of
the tool StateWorks. Our work uses a formal definition of completeness based on the set
theory [WHI11].

Different to [Lat03] and [KLO6] we do not express “safety properties” as properties of a
formal language. We use the automata theory as in [Sak09] with focus on computation
mechanisms and the ability of a FSM to provide a specified result for any input. For
the suitability in safety-critical systems we require a FSM to generate an output that is
considered safe for every computation step. Our approach to achieve a safe behavior in
a project context is based on a formally complete specification of a model providing a
specified output.

480



Similar to purposes of runtime verification [FFM09, BGHS04] and model-checking
[BBBT04, BK08] our work is focused on software with a potentially infinite runtime. We
however use different different types of automata for the design of a FSM model than
for the verification. Runtime verification and model-checking require decisions whether
formally expressed properties are fulfilled or not. Such decision making processes and
algorithms are based on infinite formal expressions and Biichi automata [Biic62]. The
focus of our work is the design of FSMs. Our intention is to introduce well-researched
formalisms, properties and methods for domain-specific languages to support the design
of FSMs for safety-critical systems in industrial settings.

9 Conclusions and Outlook

The base of our investigations was the design of model with the formalized method of
functional trees, that is already applied in industry [WH11]. We shown that a designed
model with functional trees has an equivalent expression as FSM, but is more suitable
for the use in safety-critical applications. The rigorous formalism of functional trees en-
sures that for every combinations of input and state values the model provides a specified,
verified and tested result.

We have demonstrated a method to express a functional tree designed model as an automa-
ton with an alphabet and states. The properties of the automaton are the base to define
formal requirements on domain-specific languages for model-driven software engineering
safety-critical systems. Our analysis showed that a model has to be able to provide a spec-
ified result for every element of it’s input and state space. If a domain-specific language’s
model output is a FSM it has meet the following formal requirements:

e There has to be a bijective function from physical input intervals and states to model
inputs and states — a simple realization is possible by space partitioning.

e The FSM has to be non-terminating, deterministic and complete. A rigorously spec-
ified, verifiable and testable reaction on invalid, erroneous or inconsistent input is
required.

Our defined requirements are based on well-understood properties and an established for-
malism: automatons and their expression as FSMs. The key point is that these require-
ments are easily verifiable. With our defined requirements, existing DSLs and modeling
languages can be evaluated whether they are suitable for the use in the development pro-
cess of safety-critical systems. For the design of future DSLs these requirements can be a
base and existing DSLs can be evaluated for their suitability using our criteria. Future work
furthermore addresses analyzing the impact of our work on model checking [BBBT04] and
source code instrumentation [FHRS07, vHKGH11] for runtime verification techniques.

481



References

[ASO3]

[BBBT04]

[BGHS04]

[BKOS]

[Biic62]

[CENOla]
[CENO1b]

[FEMO09]

[FHRSO07]

[GHHT 12]

[IEC11]
[KLO6]
[Lat03]
[Oes12]
[Sak09]

[VHKGHI11]

[WHI1]

[WWWO04]

Jean-Paul Allouche and Jeffrey O. Shallit. Automatic Sequences - Theory, Applica-
tions, Generalizations. Cambridge University Press, 2003.

R. Buschermohle, M. Brorkens, I. Briickner, W. Damm, W. Hasselbring, B. Josko,
C. Schulte, and T. Wolf. Model Checking — Grundlagen und Praxiserfahrungen.
Informatik-Spektrum, 27(2):146—158, April 2004.

Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-Based
Runtime Verification. In Bernhard Steffen and Giorgio Levi, editors, VM CAI, volume
2937 of Lecture Notes in Computer Science, pages 44-57. Springer, 2004.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

J. R. Biichi. Proc. Internat. Congr. on Logic, Methodology and Philosophy of Sci-
ence 1-11. In Nagel et al., editor, On a decision method in restricted second-order
arithmetic. Stanford Univ. Press, 1962.

CENELEC. EN50126 - Railway applications: the specification and demonstation of
Reliability, Availabity, Maintainability and Safety. CENELEC, 2001.

CENELEC. EN50128 - Railway Applications: Software for Railway Control and
Protection Systems. CENELEC, 2001.

Ylies Falcone, Jean-Claude Fernandez, and Laurent Mounier. Runtime Verification of
Safety Progress Properties. In Runtime Verification 2009, Lecture Notes in Computer
Science, Grenoble, France, June 2009.

Thilo Focke, Wilhelm Hasselbring, Matthias Rohr, and Johannes-Gerhard Schute.
Instrumentierung zum Monitoring mittels Aspekt-orientierter Programmierung. In
Tagungsband Software Engineering 2007, volume 105 of LNI, pages 55-58, 2007.

Wolfgang Goerigk, Wilhelm Hasselbring, Gregor Hennings, Reiner Jung, Holger Neu-
stock, Heiko Schaefer, Christian Schneider, Elferik Schultz, Thomas Stahl, Reinhard
von Hanxleden, Steffen Weik, and Stefan Zeug. Entwurf einer doménenspezifischen
Sprache fiir elektronische Stellwerke. In Stefan Jahnichen, Axel Kiipper, and Sahin Al-
bayrak, editors, Software Engineering, volume 198 of LNI, pages 119-130. GI, 2012.

IEC. IEC 61508 - Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems (E/E/PE, or E/E/PES). 1IEC, 2011.

Orna Kupferman and Robby Lampert. On the construction of fine automata for safety
properties. In In Proc. 4th ATVA, LNCS 4218, pages 110-124, 2006.

Timo Latvala. Efficient Model Checking of Safety Properties. In In Model Checking
Software. 10th International SPIN Workshop, pages 74-88. Springer, 2003.

Bernd Oestereich. Analyse und Design mit UML 2.5. Oldenbourg Verlag, 10th edition,
2012.

Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press,
20009.

André van Hoorn, Holger Knoche, Wolfgang Goerigk, and Wilhelm Hasselbring.
Model-Driven Instrumentation for Dynamic Analysis of Legacy Software Systems. In
Proceedings of the 13th Workshop Software-Reengineering (WSR 2011), pages 26-27,
May 2011. (Softwaretechnik-Trends 31(2) (May 2011) 18-19).

Michael Wasilewski and Wilhelm Hasselbring. A Formal and Pragmatic Approach to
Engineering Safety-critical Rail Vehicle Control Software. In Software Engineering,
volume 183 of LNI, pages 99-110. GI, 2011.

Ferdinand Wagner, T. Wagner, and Peter Wolstenholme. Closing the Gap Between
Software Modelling and Code. In ECBS, pages 52—-60. IEEE Computer Society, 2004.

482



